Annales academiae scientiarum Fennicae. Mathematica dissertationes; Vol.158 (Helsinki, 2013). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAnnales academiae scientiarum Fennicae. Mathematica dissertationes. Vol.158: On noncommutative BRST-complex and superconnection character forms: diss. / H.Lipponen. - Helsinki: Suomalainen tiedeakatemia, 2013. - 121 p. - Ref.: p.119-121. - ISBN 978-951-41-1072-6
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
1  Introduction ................................................. 7
2  The cusp calculus ........................................... 10
   2.1  Basic properties of cusp operators ..................... 16
   2.2  The cusp Dirac operator ................................ 23
   2.3  The even dimensional case .............................. 23
   2.4  The odd dimensional case ............................... 24
3  Trace functionals ........................................... 25
   3.1 The trace anomaly formula ............................... 31
4  A brief introduction to the BRST-formalism .................. 34
5  Descent equations in the finite dimensional case ............ 37
6  Forms associated with families of Dirac operators ........... 43
7  Eta-forms and localization: a first look .................... 46
   7.1  Eta 1-form ............................................. 46
   7.2  Eta 2-form ............................................. 47
   7.3  Eta 3-form ............................................. 48
8  Regularization of the forms F(dF)m .......................... 49
9  Noncommutative BRST-complex ................................. 51
   9.1  BRST-complex ........................................... 52
   9.2  Superconnections ....................................... 55
   9.3  The total superconnection .............................. 58
   9.4  Superconnection character forms ........................ 59
   9.5  The triangle formula ................................... 64
10 Eta-chains and eta-cocycles ................................. 70
   10.1 Basic definitions ...................................... 70
   10.2 Homotopy invariance of eta-cocycles .................... 73
   10.3 Locality ............................................... 76
11 Decomposition theorems ...................................... 76
   11.1 Superconnection fig.1 = tα + θ ............................. 77
   11.2 The general case ....................................... 85
   11.3 Superconnection fig.1 = tθ ................................. 89
12 Further properties of eta-cocycles and computations ......... 94
   12.1 Reducing eta-chains .................................... 94
13 A regularization of eta-cocycles ............................ 96
   13.1 The counterterm regularization of Mickelsson and
        Paycha ................................................. 98
14 Computations of eta-cocycles ................................ 99
   14.1 Computations in the case fig.1 = tθ ........................ 99
   14.2 Computations in the case fig.1 = tα + θ ................... 100
15 The odd case ............................................... 102
   15.1 Local formulas ........................................ 105
   15.2 Mickelsson-Faddeev-Shatasvili-cocycle ................. 105
   15.3 Schwinger term in dimension 5 ......................... 107
   15.4 The general Schwinger term ............................ 109
16 Zero modes ................................................. 112
   16.1 The fully elliptic case ............................... 112
   16.2 The general case ...................................... 113
17 Summary .................................................... 114
   17.1 Open problems ......................................... 115
18 Appendix: Decomposing the forms F(dF)m ..................... 116

References .................................................... 119


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:36 2019. Размер: 7,264 bytes.
Посещение N 1415 c 16.04.2013