1 General Introduction
K. Ohno ...................................................... 1
References .................................................. 15
2 Nanometer-Scale Structure Formation on Solid Surfaces
M. Tanaka, K. Shudo, and S. Ohno ............................ 19
2.1 Introduction ........................................... 19
2.2 Atomic Layer Etching Processes on Silicon Surfaces ..... 21
2.2.1 Introduction .................................... 21
2.2.2 Real-Time Optical Measurements .................. 24
2.2.3 Adsorption of Halogen Atoms: Sticking
Coefficient and Potential Barrier ............... 26
2.2.4 Site-Selective Adsorption ....................... 34
2.2.5 Desorption of Silicon Halides and Restoration
of the DAS Structure ............................ 39
2.2.6 Summary ......................................... 48
2.3 Nanoscale Fabrication Processes of Silicon Surfaces
with Halogens .......................................... 50
2.3.1 Introduction .................................... 50
2.3.2 Scanning Tunneling Microscopy ................... 53
2.3.3 Thermal Desorption Process ...................... 56
2.3.4 Cluster Alignment by Passive Fabrication ........ 62
2.3.5 Active Fabrication .............................. 68
2.3.6 Summary ......................................... 76
2.4 Self-Organized Nanopattern Formation on Copper
Surfaces ............................................... 77
2.4.1 Introduction .................................... 77
2.4.2 Experiments ..................................... 78
2.4.3 Novel Phenomena on Cu(001)-c(2×2)N .............. 79
2.4.4 Nanopattern Formation at Vicinal Surfaces ....... 79
2.4.5 Strain-Dependent Nucleation of Metal
Islands ......................................... 82
2.4.6 Strain-Dependent Dissociation of Oxygen
Molecules ....................................... 85
2.4.7 Summary ......................................... 88
References .................................................. 89
3 Ultrafast Laser Spectroscopy Applicable to Nano- and
Micromaterials
J. Takeda ................................................... 97
3.1 Introduction ........................................... 97
3.2 Femtosecond Optical Kerr Gate Luminescence
Spectroscopy ........................................... 97
3.2.1 Time-Resolved Luminescence Spectroscopy:
Up-Conversion Technique vs. Opical Kerr Gate
Method .......................................... 97
3.2.2 Femtosecond OKG Method: Experimental Setup
and Results ..................................... 99
3.3 Femtosecond Transient Grating Spectroscopy Combined
with a Phase Mask ..................................... 105
3.3.1 Principle of Transient Grating
Spectroscopy ................................... 105
3.3.2 Transient Grating Spectroscopy Combined with
a Phase Mask: Experimental Setup and Results ... 107
3.4 Femtosecond Real-Time Pump-Probe Imaging
Spectroscopy .......................................... 109
3.4.1 Principle of Real-Time Pump-Probe Imaging
Spectroscopy ................................... 109
3.4.2 Experimental Demonstrations of Real-Time
Pump-Probe Imaging Spectroscopy ................ 112
References ............................................... 117
4 Defects in Anatase Titanium Dioxide
T. Sekiya and S. Kurita .................................... 121
4.1 Introduction .......................................... 121
4.2 Growth of Anatase Single Crystal ...................... 122
4.3 Control of Defect States .............................. 123
4.3.1 Heat Treatment Under Oxygen Pressure ........... 123
4.3.2 Heat Treatment Under Hydrogen Atmosphere ....... 124
4.4 Properties of Anatase ................................. 129
4.4.1 Absorption Edge ................................ 129
4.4.2 Photoluminescence .............................. 131
4.4.3 EPR Spectra .................................... 132
4.4.4 Electric Conduction ............................ 134
4.5 Carrier Control by Photoirradiation ................... 137
4.5.1 Photoconductivity .............................. 137
4.5.2 EPR ............................................ 138
References ................................................. 140
5 Organic Radical l,3,5-Trithia-2,4,6-Triazapentalenyl
(TTTA) as Strongly Correlated Electronic Systems:
Experiment and Theory
J. Takeda, Y. Noguchi, S. Ishii, and K. Ohno ............... 143
5.1 Introduction .......................................... 143
5.2 Crystalline Structure ................................. 144
5.3 Experimental .......................................... 146
5.3.1 Paramagnetic Susceptibility and Electron Spin
Resonance ...................................... 146
5.3.2 Reflectivity ................................... 150
5.3.3 Photoinduced Magnetic Phase Transition ......... 151
5.4 Electronic Structure Calculations ..................... 157
5.4.1 Results Within the LDA ......................... 157
5.4.2 Breakdown of the LDA ........................... 161
5.4.3 T-Matrix Theory ................................ 162
5.4.4 Results in the T-Matrix Theory ................. 164
5.4.5 Concluding Remarks ............................. 167
References ............................................ 168
6 Ab Initio GW Calculations Using an All-Electron Approach
S. Ishii, K. Ohno, and Y. Kawazoe .......................... 171
6.1 Introduction .......................................... 171
6.2 Many-Body Perturbation Theory and GW Approximation .... 172
6.3 Choice of Basis-Set Function .......................... 175
6.4 Application to Clusters and Molecules ................. 176
6.4.1 Alkali-Metal Clusters .......................... 176
6.4.2 Semiconductor Clusters ......................... 178
6.4.3 Gallium Arsenide Clusters and Crystal .......... 180
6.4.4 Benzene Molecule ............................... 183
6.4.5 Why Are LDA Eigenvalues of HOMO Level
Shallower Than Experiments? .................... 184
6.5 Self-Consistent GW vs. First Iterative GW (G0W0) ...... 184
6.6 Appendix: Proof of WT Identity ........................ 185
6.7 Summary ............................................... 187
References ............................................ 187
7 First-Principles Calculations Involving Two-Particle
Excited States of Atoms and Molecules Using T-Matrix
Theory
Y. Noguchi, S. Ishii, and K. Ohno .......................... 189
7.1 Background ............................................ 189
7.2 Methodology: T-Matrix Theory .......................... 191
7.3 Double Electron Affinity of Alkali-Metal Clusters ..... 193
7.3.1 Introduction ................................... 193
7.3.2 Effect of the Coulomb Interaction in the DEA
Spectra ........................................ 193
7.3.3 Short-Range Repulsive Coulomb Interaction
Within the T-Matrix Theory ..................... 195
7.3.4 Summary ........................................ 196
7.4 Double Ionization Energy Spectra ...................... 196
7.4.1 Introduction ................................... 196
7.4.2 Two-Valence-Electron Systems ................... 198
7.4.3 Inert Gas Atoms ................................ 199
7.4.4 CO and C2H2 Molecules........................... 200
7.4.5 Summary......................................... 202
7.5 Two-Electron Distribution Functions and Short-Range
Electron Correlations.................................. 202
7.5.1 Introduction ................................... 202
7.5.2 Methodology .................................... 204
7.5.3 Ar ............................................. 204
7.5.4 CO ............................................. 206
7.5.5 CO2 ............................................ 208
7.5.6 C2H2............................................ 210
7.5.7 Summary ........................................ 211
7.6 Summary ............................................... 212
7.7 Appendix .............................................. 213
7.7.1 Fourier Transformation of Green's Function ..... 213
7.7.2 Fourier Transformation of K-Matrix ............. 214
7.7.3 Fourier Transformation of T-Matrix ............. 215
References ............................................ 216
8 Green's Function Formulation of Electronic Transport
at Nanoscale
A.A. Farajian, O.V. Pupysheva, B.I. Yakobson, and
Y. Kawazoe ................................................. 219
8.1 Introduction........................................... 219
8.2 Landauer's Transport Formalism: The Green's Function
Implementation ........................................ 220
8.2.1 Multichannel Landauer's Formula ................ 220
8.2.2 Surface Green's Function Matching Method ....... 221
8.2.3 Scattering Matrix and Transport Properties ..... 223
8.2.4 Alternative Formulation of the Total
Conductance .................................... 226
8.3 Carbon Nanotube Heterostructures ...................... 227
8.3.1 Conductance of Nanotubes with Vacancy
or Pentagon-Heptagon Defects ................... 227
8.3.2 Doped Nanotube Junctions: Rectification and
Novel Mechanism for Negative Differential
Resistance ..................................... 230
8.3.3 Effects of Random Disorder on Transport of
Nanotubes ...................................... 234
8.4 Functional Molecule Between Two Metallic Contacts ..... 235
8.4.1 Transport Through Xylyl-Dithiol Molecule
Attached to Two Gold Electrodes ................ 235
8.4.2 Transport Through Benzene-Dithiol Molecule
Attached to Two Gold Electrodes ................ 238
8.5 Summary ............................................... 239
References ............................................ 240
9 Self-Assembled Quantum Dot Structure Composed of
III-V Compound Semiconductors
K. Mukai ................................................... 243
9.1 Introduction .......................................... 243
9.2 Control of QD Structure by Growth Condition ........... 244
9.2.1 Control of Growth Parameters .................... 244
9.2.2 Closely Stacked QDs ............................. 246
9.2.3 QD Buried in Strained Layer ..................... 248
9.3 Growth Process of QD Structure ........................ 252
9.4 Analysis of QD Structure .............................. 256
9.4.1 Grazing Incidence X-Ray Scattering .............. 256
9.4.2 Scanning Tunneling Microscopy.................... 258
9.5 Summary and Perspective ............................... 259
References ................................................. 260
10 Potential-Tailored Quantum Wells for High- Performance
Optical Modulators/Switches
T. Arakawa and K. Tada ..................................... 263
10.1 Introduction .......................................... 263
10.2 Parabolic Potential Quantum Well ...................... 264
10.3 Graded-Gap Quantum Well ............................... 266
10.4 Asymmetric Coupled Quantum Well ....................... 268
10.5 Intermixing Quantum Well .............................. 271
10.6 Summary ............................................... 272
References ................................................. 272
11 Thermodynamic Properties of Materials Using Lattice-
Gas Models with Renormalized Potentials
R. Sahara, H. Mizuseki, K. Ohno, and Y. Kawazoe ............ 275
11.1 Introduction .......................................... 275
11.2 Scheme of the Potential Renormalization ............... 276
11.3 Application of the Potential Renormalization .......... 278
11.3.1 Application to Melting Behavior of Si .......... 278
11.3.2 Application to Cu-Au Phase Diagram ............. 282
11.3.3 Application to Transition and Noble Metals ..... 286
11.3.4 Order-Disorder Phase Transition of L10 FePt
Alloy Using the Renormalized Potential
Combined with First-Principles Calculations .... 287
11.4 Summary................................................ 289
References ............................................ 289
12 Optically Driven Micromachines for Biochip Application
S. Maruo.................................................... 291
12.1 Introduction........................................... 291
12.1.1 Two-Photon Microstereolithography for
Production of 3D Micromachines ................. 292
12.1.2 Assembly-Free, Single-Step Fabrication
Process of Movable Microparts .................. 293
12.2 Optically Driven Micromachines ........................ 296
12.2.1 Optical Trapping ............................... 296
12.2.2 Optical Driving Method of Multiple
Micromachines .................................. 298
12.2.3 Optimization of Time-Divided Laser Scanning .... 300
12.2.4 Cooperative Control of Micromanipulators ....... 302
12.2.5 Optically Driven Micropump ..................... 303
12.2.6 Concept of AU-Optically Controlled Biochip ..... 307
12.3 Conclusion and Future Prospect ........................ 307
References ................................................. 308
13 Study of Complex Plasmas
M. Shindo and O. Ishihara .................................. 311
13.1 Overview of Complex Plasma Research ................... 311
13.2 Charging of a Dust Particle in a Plasma ............... 312
13.3 Measurements of the Charge of Dust Particles
Levitating in Electron Beam Plasma [12] ............... 313
13.4 Various Approaches to Plasma-Aided Design
of Microparticles System in Ion Flow .................. 315
13.4.1 Analysis of Ion Trajectories Around a Dust
Particle in Ion Flow [17] ...................... 316
13.4.2 Wake Potential Formation to Bind Dust
Particles Aligned Along Ion Flow ............... 318
13.4.3 Attractive Force Between Dust Particles
Aligned Perpendicular to Ion Flow [30] ......... 320
13.5 Simulation Study of Cluster Design of Charged Dust
Particles ............................................. 321
13.6 Complex Plasma Experiment in Cryogenic Environment
[38] .................................................. 323
13.7 Summary ............................................... 325
References ................................................. 326
Index ......................................................... 329
|