Nano- and micromaterials (Berlin; New York, 2008). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNano- and micromaterials / ed. by K.Ohno, M.Tanaka, J.Takeda, Y.Kawazoe. - Berlin; New York: Springer, 2008. - xv, 337 p.: ill. - (Advances in materials research; 9). - Incl. bibl. ref. - Ind.: p.329-337. - ISBN 978-3-540-74556-3
 

Оглавление / Contents
 
1  General Introduction
   K. Ohno ...................................................... 1
   References .................................................. 15

2  Nanometer-Scale Structure Formation on Solid Surfaces
   M. Tanaka, K. Shudo, and S. Ohno ............................ 19
   2.1  Introduction ........................................... 19
   2.2  Atomic Layer Etching Processes on Silicon Surfaces ..... 21
        2.2.1  Introduction .................................... 21
        2.2.2  Real-Time Optical Measurements .................. 24
        2.2.3  Adsorption of Halogen Atoms: Sticking 
               Coefficient and Potential Barrier ............... 26
        2.2.4  Site-Selective Adsorption ....................... 34
        2.2.5  Desorption of Silicon Halides and Restoration 
               of the DAS Structure ............................ 39
        2.2.6  Summary ......................................... 48
   2.3  Nanoscale Fabrication Processes of Silicon Surfaces
        with Halogens .......................................... 50
        2.3.1  Introduction .................................... 50
        2.3.2  Scanning Tunneling Microscopy ................... 53
        2.3.3  Thermal Desorption Process ...................... 56
        2.3.4  Cluster Alignment by Passive Fabrication ........ 62
        2.3.5  Active Fabrication .............................. 68
        2.3.6  Summary ......................................... 76
   2.4  Self-Organized Nanopattern Formation on Copper 
        Surfaces ............................................... 77
        2.4.1  Introduction .................................... 77
        2.4.2  Experiments ..................................... 78
        2.4.3  Novel Phenomena on Cu(001)-c(2×2)N .............. 79
        2.4.4  Nanopattern Formation at Vicinal Surfaces ....... 79
        2.4.5  Strain-Dependent Nucleation of Metal 
               Islands ......................................... 82
        2.4.6  Strain-Dependent Dissociation of Oxygen 
               Molecules ....................................... 85
        2.4.7  Summary ......................................... 88
   References .................................................. 89

3  Ultrafast Laser Spectroscopy Applicable to Nano- and 
   Micromaterials
   J. Takeda ................................................... 97
   3.1  Introduction ........................................... 97
   3.2  Femtosecond Optical Kerr Gate Luminescence 
        Spectroscopy ........................................... 97
        3.2.1  Time-Resolved Luminescence Spectroscopy: 
               Up-Conversion Technique vs. Opical Kerr Gate 
               Method .......................................... 97
        3.2.2  Femtosecond OKG Method: Experimental Setup
               and Results ..................................... 99
   3.3  Femtosecond Transient Grating Spectroscopy Combined
        with a Phase Mask ..................................... 105
        3.3.1  Principle of Transient Grating 
               Spectroscopy ................................... 105
        3.3.2  Transient Grating Spectroscopy Combined with 
               a Phase Mask: Experimental Setup and Results ... 107
   3.4  Femtosecond Real-Time Pump-Probe Imaging 
        Spectroscopy .......................................... 109
        3.4.1  Principle of Real-Time Pump-Probe Imaging 
               Spectroscopy ................................... 109
        3.4.2  Experimental Demonstrations of Real-Time 
               Pump-Probe Imaging Spectroscopy ................ 112
     References ............................................... 117

4  Defects in Anatase Titanium Dioxide
   T. Sekiya and S. Kurita .................................... 121
   4.1  Introduction .......................................... 121
   4.2  Growth of Anatase Single Crystal ...................... 122
   4.3  Control of Defect States .............................. 123
        4.3.1  Heat Treatment Under Oxygen Pressure ........... 123
        4.3.2  Heat Treatment Under Hydrogen Atmosphere ....... 124
   4.4  Properties of Anatase ................................. 129
        4.4.1  Absorption Edge ................................ 129
        4.4.2  Photoluminescence .............................. 131
        4.4.3  EPR Spectra .................................... 132
        4.4.4  Electric Conduction ............................ 134
   4.5  Carrier Control by Photoirradiation ................... 137
        4.5.1  Photoconductivity .............................. 137
        4.5.2  EPR ............................................ 138
   References ................................................. 140

5  Organic Radical l,3,5-Trithia-2,4,6-Triazapentalenyl 
   (TTTA) as Strongly Correlated Electronic Systems:
   Experiment and Theory
   J. Takeda, Y. Noguchi, S. Ishii, and K. Ohno ............... 143
   5.1  Introduction .......................................... 143
   5.2  Crystalline Structure ................................. 144
   5.3  Experimental .......................................... 146
        5.3.1  Paramagnetic Susceptibility and Electron Spin 
               Resonance ...................................... 146
        5.3.2  Reflectivity ................................... 150
        5.3.3  Photoinduced Magnetic Phase Transition ......... 151
   5.4  Electronic Structure Calculations ..................... 157
        5.4.1  Results Within the LDA ......................... 157
        5.4.2  Breakdown of the LDA ........................... 161
        5.4.3  T-Matrix Theory ................................ 162
        5.4.4  Results in the T-Matrix Theory ................. 164
        5.4.5  Concluding Remarks ............................. 167
        References ............................................ 168

6  Ab Initio GW Calculations Using an All-Electron Approach
   S. Ishii, K. Ohno, and Y. Kawazoe .......................... 171
   6.1  Introduction .......................................... 171
   6.2  Many-Body Perturbation Theory and GW Approximation .... 172
   6.3  Choice of Basis-Set Function .......................... 175
   6.4  Application to Clusters and Molecules ................. 176
        6.4.1  Alkali-Metal Clusters .......................... 176
        6.4.2  Semiconductor Clusters ......................... 178
        6.4.3  Gallium Arsenide Clusters and Crystal .......... 180
        6.4.4  Benzene Molecule ............................... 183
        6.4.5  Why Are LDA Eigenvalues of HOMO Level 
               Shallower Than Experiments? .................... 184
   6.5  Self-Consistent GW vs. First Iterative GW (G0W0) ...... 184
   6.6  Appendix: Proof of WT Identity ........................ 185
   6.7  Summary ............................................... 187
        References ............................................ 187
7  First-Principles Calculations Involving Two-Particle 
   Excited States of Atoms and Molecules Using T-Matrix 
   Theory
   Y. Noguchi, S. Ishii, and K. Ohno .......................... 189
   7.1  Background ............................................ 189
   7.2  Methodology: T-Matrix Theory .......................... 191
   7.3  Double Electron Affinity of Alkali-Metal Clusters ..... 193
        7.3.1  Introduction ................................... 193
        7.3.2  Effect of the Coulomb Interaction in the DEA 
               Spectra ........................................ 193
        7.3.3  Short-Range Repulsive Coulomb Interaction
               Within the T-Matrix Theory ..................... 195
        7.3.4  Summary ........................................ 196
   7.4  Double Ionization Energy Spectra ...................... 196
        7.4.1  Introduction ................................... 196
        7.4.2  Two-Valence-Electron Systems ................... 198
        7.4.3  Inert Gas Atoms ................................ 199
        7.4.4  CO and C2H2 Molecules........................... 200
        7.4.5  Summary......................................... 202
   7.5  Two-Electron Distribution Functions and Short-Range
        Electron Correlations.................................. 202
        7.5.1  Introduction ................................... 202
        7.5.2  Methodology .................................... 204
        7.5.3  Ar ............................................. 204
        7.5.4  CO ............................................. 206
        7.5.5  CO2 ............................................ 208
        7.5.6  C2H2............................................ 210
        7.5.7  Summary ........................................ 211
   7.6  Summary ............................................... 212
   7.7  Appendix .............................................. 213
        7.7.1  Fourier Transformation of Green's Function ..... 213
        7.7.2  Fourier Transformation of K-Matrix ............. 214
        7.7.3  Fourier Transformation of T-Matrix ............. 215
        References ............................................ 216

8  Green's Function Formulation of Electronic Transport
   at Nanoscale
   A.A. Farajian, O.V. Pupysheva, B.I. Yakobson, and
   Y. Kawazoe ................................................. 219
   8.1  Introduction........................................... 219
   8.2  Landauer's Transport Formalism: The Green's Function
        Implementation ........................................ 220
        8.2.1  Multichannel Landauer's Formula ................ 220
        8.2.2  Surface Green's Function Matching Method ....... 221
        8.2.3  Scattering Matrix and Transport Properties ..... 223
        8.2.4  Alternative Formulation of the Total 
               Conductance .................................... 226
   8.3  Carbon Nanotube Heterostructures ...................... 227
        8.3.1  Conductance of Nanotubes with Vacancy
               or Pentagon-Heptagon Defects ................... 227
        8.3.2  Doped Nanotube Junctions: Rectification and
               Novel Mechanism for Negative Differential
               Resistance ..................................... 230
        8.3.3  Effects of Random Disorder on Transport of 
               Nanotubes ...................................... 234
   8.4  Functional Molecule Between Two Metallic Contacts ..... 235
        8.4.1  Transport Through Xylyl-Dithiol Molecule 
               Attached to Two Gold Electrodes ................ 235
        8.4.2  Transport Through Benzene-Dithiol Molecule
               Attached to Two Gold Electrodes ................ 238
   8.5  Summary ............................................... 239
        References ............................................ 240

9  Self-Assembled Quantum Dot Structure Composed of
   III-V Compound Semiconductors
   K. Mukai ................................................... 243
   9.1  Introduction .......................................... 243
   9.2  Control of QD Structure by Growth Condition ........... 244
        9.2.1 Control of Growth Parameters .................... 244
        9.2.2 Closely Stacked QDs ............................. 246
        9.2.3 QD Buried in Strained Layer ..................... 248
   9.3  Growth Process of QD Structure ........................ 252
   9.4  Analysis of QD Structure .............................. 256
        9.4.1 Grazing Incidence X-Ray Scattering .............. 256
        9.4.2 Scanning Tunneling Microscopy.................... 258
   9.5  Summary and Perspective ............................... 259
   References ................................................. 260

10 Potential-Tailored Quantum Wells for High- Performance 
   Optical Modulators/Switches
   T. Arakawa and K. Tada ..................................... 263
   10.1 Introduction .......................................... 263
   10.2 Parabolic Potential Quantum Well ...................... 264
   10.3 Graded-Gap Quantum Well ............................... 266
   10.4 Asymmetric Coupled Quantum Well ....................... 268
   10.5 Intermixing Quantum Well .............................. 271
   10.6 Summary ............................................... 272
   References ................................................. 272

11 Thermodynamic Properties of Materials Using Lattice-
   Gas Models with Renormalized Potentials
   R. Sahara, H. Mizuseki, K. Ohno, and Y. Kawazoe ............ 275
   11.1 Introduction .......................................... 275
   11.2 Scheme of the Potential Renormalization ............... 276
   11.3 Application of the Potential Renormalization .......... 278
        11.3.1 Application to Melting Behavior of Si .......... 278
        11.3.2 Application to Cu-Au Phase Diagram ............. 282
        11.3.3 Application to Transition and Noble Metals ..... 286
        11.3.4 Order-Disorder Phase Transition of L10 FePt 
               Alloy Using the Renormalized Potential 
               Combined with First-Principles Calculations .... 287
   11.4 Summary................................................ 289
        References ............................................ 289

12 Optically Driven Micromachines for Biochip Application
   S. Maruo.................................................... 291
   12.1 Introduction........................................... 291
        12.1.1 Two-Photon Microstereolithography for 
               Production of 3D Micromachines ................. 292
        12.1.2 Assembly-Free, Single-Step Fabrication
               Process of Movable Microparts .................. 293
   12.2 Optically Driven Micromachines ........................ 296
        12.2.1 Optical Trapping ............................... 296
        12.2.2 Optical Driving Method of Multiple 
               Micromachines .................................. 298
        12.2.3 Optimization of Time-Divided Laser Scanning .... 300
        12.2.4 Cooperative Control of Micromanipulators ....... 302
        12.2.5 Optically Driven Micropump ..................... 303
        12.2.6 Concept of AU-Optically Controlled Biochip ..... 307
   12.3 Conclusion and Future Prospect ........................ 307
   References ................................................. 308

13 Study of Complex Plasmas
   M. Shindo and O. Ishihara .................................. 311
   13.1 Overview of Complex Plasma Research ................... 311
   13.2 Charging of a Dust Particle in a Plasma ............... 312
   13.3 Measurements of the Charge of Dust Particles 
        Levitating in Electron Beam Plasma [12] ............... 313
   13.4 Various Approaches to Plasma-Aided Design
        of Microparticles System in Ion Flow .................. 315
        13.4.1 Analysis of Ion Trajectories Around a Dust
               Particle in Ion Flow [17] ...................... 316
        13.4.2 Wake Potential Formation to Bind Dust
               Particles Aligned Along Ion Flow ............... 318
        13.4.3 Attractive Force Between Dust Particles
               Aligned Perpendicular to Ion Flow [30] ......... 320
   13.5 Simulation Study of Cluster Design of Charged Dust 
        Particles ............................................. 321
   13.6 Complex Plasma Experiment in Cryogenic Environment
        [38] .................................................. 323
   13.7 Summary ............................................... 325
   References ................................................. 326

Index ......................................................... 329


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:22 2019. Размер: 19,797 bytes.
Посещение N 1565 c 04.12.2012