s Manevich L.I. Mechanics of periodically heterogeneous structures (Berlin; New York, 2002). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаManevich L.I. Mechanics of periodically heterogeneous structures / L.I.Manevitch, I.V.Andrianov, V.G.Oshmyan. - Berlin; New York: Springer, 2002. - ix, 264 p.: ill. - (Foundations of engineering mechanics) (Engineering online library). - Ref.: p.255-264. - ISBN 3-540-41630-7
 

Оглавление / Contents
 
   Preface ...................................................... V
0  Introduction ................................................. 1
   0.1  Numerical and asymptotic procedures in the theory of
        heterogeneous materials ................................. 1
   0.2  Mathematical standpoint ................................. 3
   0.3  Physical statements of the homogenization problem ....... 6
1  Definitions, assumptions and theorems in homogenization
   problems ..................................................... 7
   1.1  Definitions for homogenization problems in solid of
        periodic microctructure ................................. 7
   1.2  Cell problems and cell solutions for an elastic solid
        of periodic microstructure ............................. 10
   1.3  Asymptotic series in homogenization problems of
        periodic microstructure ................................ 14
2  Application of cell functions for the calculation of
   binary composite elastic moduli ............................. 20
   2.1  Laminated composite .................................... 20
   2.2  Particulate-filled composite ........................... 26
        2.2.1  Structural model ................................ 26
        2.2.2  Boundary-value problems and a numerical
               technique for their solution .................... 29
        2.2.3  Elastic properties of a binary composite of
               periodic structure with perfectly bonded
               components ...................................... 33
        2.2.4  Effect of adhesion on the effective elastic
               moduli of a binary composite of periodic
               structure ....................................... 44
        2.2.5  Analysis of micromechanical field
               distributions ................................... 48
3  Asymptotic study of linear vibrations of a stretched beam
   with concentrated masses and discrete elastic supports ...... 58
   3.1  Statement of the problem ............................... 58
   3.2  Asymptotic analysis .................................... 61
        3.2.1  Empty frequency domains ......................... 61
        3.2.2  Low-frequency region, α=0. Long-wave modes ...... 64
        3.2.3  Medium-frequency region, α=2. Tooth-like wave
               modes ........................................... 67
        3.2.4  High-frequency region, α=2.5. Vibrations of
               the beam  between immobile heavy masses ......... 71
   3.2.5  Conclusions .......................................... 73
4  Reinforced plates ........................................... 76
   4.1  Rexural vibrations of a rectangular reinforced plate
        on an elastic foundation ............................... 76
   4.2  Static problem ......................................... 92
   4.3  Flexural vibrations and equilibrium state of circular
        plates reinforced by radial ribs ....................... 97
   4.4  Geometrically nonlinear flexural vibrations of
        rectangular reinforced plates ......................... 106
   4.5  Account of ribs torsion rigidity ...................... 112
   4.6  Account of ribs eccentricity .......................... 116
   4.7  Homogenization for plates with wide ribs .............. 122
5  Problems of elasticity theory for reinforced orthotropic
   plates ..................................................... 128
   5.1  Reinforced orthotropic strip .......................... 128
   5.2  Force transfer to a stringer orthotropic strip via
        an elastic element .................................... 146
   5.3  Plane vibrations of circular cylindrically
        orthotropic plates with radial ribs ................... 151
6  Reinforced shells .......................................... 156
   6.1  Stringer cylindrical shells ........................... 156
   6.2  Shells of revolution with meridional ribs ............. 166
   6.3  Cross-reinforced shells ............................... 174
   6.4  Waffle- and ring-reinforced shells .................... 176
   6.5  Cylindrical shells rarely reinforced using
        stringers ............................................. 178
7  Corrugated plates .......................................... 188
   7.1  Model problem ......................................... 190
   7.2  Transformation of basic equations ..................... 190
   7.3  Axisymmetrical deformation of a circular corrugated
        plate ................................................. 194
   7.4  Rectangular corrugated plate .......................... 203
   7.5  Axisymmetrical vibrations of a circular corrugated
        plate ................................................. 209
8  Other periodic structures .................................. 212
   8.1  Vibrations of a cylindrical shell with a large
        number of apparent masses ............................. 212
   8.2  Plates on an elastic foundation with strip-shaped
        and support-free par .................................. 216
   8.3  Laminated structures .................................. 218
   8.4  Multisupported plates ................................. 221
   8.5  Plates and shells with a periodic system of hinges .... 225
   8.6  Simplified nonlinear equations for smooth plates and
        shells ................................................ 228
9  Perforated plates and shells ............................... 233
   9.1  Bending of rectangular plates with periodic square
        perforations .......................................... 233
   9.2  Eigenvalue problem for a perforated plate ............. 241
   9.3  Analytical approach for a large hole .................. 242
   9.4  Matching of asymptotic solutions by means of two-
        point Pade approximants ............................... 246
   9.5  The plane theory of elasticity in a perforated
        domain ................................................ 248
   9.6  Perforated shallow shells ............................. 254

   Concluding remarks. Perspectives and open problems ......... 254
   References ................................................. 255


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:22 2019. Размер: 9,993 bytes.
Посещение N 1329 c 04.12.2012