1 Laser Interactions in Nanomaterials Synthesis
David B. Geohegan, Alex A. Puretzky, Chris Rouleau,
Jeremy Jackson, Gyula Eres, Zuqin Liu, David Styers-
Barnett, Hui Hu, Bin Zhao, Ilia Ivanov, and Karren More ...... 1
1.1 Introduction ............................................ 1
1.2 Laser Ablation and Plume Thermalization at Low
Pressures ............................................... 2
1.3 Synthesis of Nanoparticles by Laser Vaporization ........ 4
1.4 Self-Assembly of Carbon Fullerenes and Nanohorns ........ 5
1.5 Catalyst-Assisted Synthesis of SWNTs .................... 9
1.6 Laser Diagnostics and Controlled Chemical Vapor
Deposition of Carbon Nanotubes ......................... 10
1.7 Summary ................................................ 15
References .................................................. 15
2 Basic Physics of Femtosecond Laser Ablation
Juergen Reif ................................................ 19
2.1 Introduction ........................................... 19
2.2 Energy Input ........................................... 20
2.2.1 Multiphoton Excitation .......................... 22
2.3 Ion Emission: Ablation ................................. 23
2.3.1 Experimental Observation ........................ 23
2.3.2 Desorption Mechanism - Coulomb Explosion ........ 25
2.4 Transient, Local Target Modification ................... 26
2.4.1 Incubation ...................................... 26
2.4.2 Transient Dynamics .............................. 27
2.5 Transient Instability and Self-Organized Structure
Formation .............................................. 30
2.5.1 Periodic "Ripples" Structures ................... 30
2.5.2 Instability and Self-Organization ............... 32
2.5.3 Polarization Dependence ......................... 35
2.6 Discussion ............................................. 38
References .................................................. 39
3 Atomic/Molecular-Level Simulations of Laser-Materials
Interactions
Leonid V. Zhigilei, Zhibin Lin, Dmitriy S. Ivanov, Elodie
Leveugle, William H. Duff, Derek Thomas, Carlos Sevilla,
and Stephen J. Guy .......................................... 43
3.1 Introduction ........................................... 43
3.2 Molecular Dynamics Method for Simulation of Laser-
Materials Interactions ................................. 47
3.2.1 Molecular Dynamics Method ....................... 47
3.2.2 Coarse-Grained MD Model for Simulation of
Laser Interactions with Molecular Systems ....... 48
3.2.3 Combined Continuum-Atomistic Model for
Simulation of Laser Interactions with Metals .... 51
3.2.4 Boundary Conditions: Pressure Waves and Heat
Conduction ...................................... 53
3.3 Simulations of Laser-Induced Structural and Phase
Transformations ........................................ 55
3.3.1 Generation of Crystal Defects ................... 56
3.3.2 Mechanisms and Kinetics of Laser Melting ........ 59
3.3.3 Photomechanical Spallation ...................... 63
3.3.4 Phase Explosion and Laser Ablation .............. 67
3.4 Concluding Remarks ..................................... 70
References .................................................. 72
4 Continuum Models of Ultrashort Pulsed Laser Ablation
Nadezhda M. Bulgakova, Razvan Stoian, Arkadi Rosenfeld,
and Ingolf V. Hertel ........................................ 81
4.1 Introduction ........................................... 81
4.2 Ultrashort Laser-Matter Interaction .................... 82
4.3 Notes on Continuum Modeling in Application to
Ultrashort, Laser-Matter Interactions .................. 84
4.4 A General Continuum Approach for Modeling of Laser-
Induced Surface Charging ............................... 89
4.5 Concluding Remarks ..................................... 94
References .................................................. 95
5 Cluster Synthesis and Cluster-Assembled Deposition in
Nanosecond Pulsed Laser Ablation
Paolo M. Ossi ............................................... 99
5.1 Introduction ........................................... 99
5.2 Phenomenology of Plume Expansion through an Ambient
Gas ................................................... 102
5.3 Analytical Models for Plume Propagation through an
Ambient Gas ........................................... 105
5.4 Mixed-Propagation Model ............................... 108
5.5 Nanoparticle Growth ................................... 114
5.6 Concluding Remarks .................................... 122
References ................................................. 122
6 Nanoparticle Formation by Femtosecond Laser Ablation
Chantal Boulmer-Leborgne, Ratiba Benzerga, and Jacques
Perrière ................................................... 125
6.1 Introduction .......................................... 125
6.2 Experimental .......................................... 126
6.3 Results ............................................... 127
6.3.1 Nature of the Species Emitted During fs PLD .... 129
6.3.2 Nature of the Nanoparticles Formed During fs
PLD ............................................ 131
6.3.3 Relevant Parameters of Nanoparticle
Formation ...................................... 134
6.4 Conclusions ........................................... 138
References ................................................. 139
7 UV Laser Ablation of Polymers: From Structuring to Thin
Film Deposition
Thomas Lippert ............................................. 141
7.1 Introduction .......................................... 141
7.1.1 Laser Ablation of Polymers ..................... 141
7.1.2 Polymers: A Short Primer ....................... 142
7.2 Polymer Properties and Ablation ....................... 145
7.2.1 Polymer Names .................................. 149
7.2.2 Polymers and Photochemistry .................... 149
7.2.3 Fundamental Issues of Laser Ablation ........... 150
7.2.4 Ablation Mechanism ............................. 153
7.2.5 Doped Polymers ................................. 157
7.2.6 Designed Polymers: Triazene Polymers ........... 158
7.2.7 Comparison of Designed and Commercially
Available Polymers ............................. 163
7.3 Deposition of Thin Films Using UV Lasers .............. 164
7.4 Conclusion ............................................ 170
References ................................................. 171
8 Deposition of Polymer and Organic Thin Films Using
Tunable, Ultrashort-Pulse Mid-Infrared Lasers
Stephen L. Johnson, Michael R. Papantonakis, and Richard
F. Haglund ................................................. 177
8.1 Introduction and Motivation ........................... 177
8.1.1 Mechanism of Laser Ablation at High
Vibrational Excitation Density ................. 178
8.1.2 The Role of Excitation Density in Materials
Modification ................................... 179
8.1.3 Laser Ablation at High Intensity and Pulse-
Repetition Frequency ........................... 182
8.1.4 Figures of Merit for Comparing Different
Laser Processing Regimes ....................... 183
8.2 Resonant Infrared Pulsed Laser Ablation of Neat
Targets ............................................... 184
8.2.1 Experimental Details ........................... 184
8.2.2 Resonant Infrared Laser Ablation of
Polyethylene Glycol) ........................... 185
8.2.3 Resonant Infrared Laser Ablation of
Polystyrene .................................... 187
8.2.4 Resonant Infrared Laser Deposition of
Poly(Tetrafluoroethylene) ...................... 190
8.3 Matrix-Assisted Resonant Infrared Pulsed Laser
Deposition ............................................ 191
8.3.1 Deposition of the Conducting Polymer
PEDOT:PSS ...................................... 192
8.3.2 Deposition of the Light-Emitting Polymer
MEH-PPV ........................................ 194
8.3.3 Deposition of Functionalized Nanoparticles ..... 196
8.4 Solid-State Lasers for Resonant MIR Ablation .......... 198
8.5 Conclusion ............................................ 200
References ................................................. 201
9 Fundamentals and Applications of MAPLE
Armando Luches and Anna Paola Caricato ..................... 203
9.1 Introduction .......................................... 203
9.2 MAPLE Deposition Apparatus ............................ 205
9.3 MAPLE Deposition of Polymers and Organic Materials .... 206
9.4 MAPLE Deposition of Biomaterials ...................... 215
9.5 MAPLE Deposition of Nanoparticle Films ................ 218
9.5.1 MAPLE Deposition of TiO2 Nanoparticle Films .... 219
9.5.2 MAPLE Deposition of SnO2 Nanoparticle Films .... 223
9.6 Discussion ............................................ 227
9.7 Conclusions ........................................... 230
References ................................................. 231
10 Advanced Biomimetic Implants Based on Nanostructured
Coatings Synthesized by Pulsed Laser Technologies
Ion N. Mihailescu, Carmen Ristoscu, Adriana Bigi,
and Isaac Mayer ............................................ 235
10.1 Introduction .......................................... 235
10.1.1 Pulsed Laser Deposition Technologies ........... 236
10.1.2 Calcium Phosphates ............................. 239
10.2 HA Coatings ........................................... 240
10.3 Octacalcium Phosphate ................................. 243
10.4 Carbonated HA and β-TCP Doped with Mn2+ Coatings ...... 245
10.4.1 Carbonated HA Doped with Mn2+ .................. 245
10.4.2 β-Tricalcium Phosphate Doped with Mn2+ ......... 247
10.5 Sr-DopedHA ............................................ 249
10.6 Hybrid Organic-Inorganic Bionanocomposites ............ 252
10.6.1 Biopolymers-CaP ................................ 252
10.6.2 Alendronate-HA ................................. 254
10.7 Conclusions ........................................... 257
References ................................................. 257
11 Laser Direct Writing of Idealized Cellular and Biologic
Constructs for Tissue Engineering and Regenerative
Medicine
Nathan R. Schiele, David T. Corr, and Douglas
B. Chrisey ................................................. 261
11.1 Conventional Tissue Engineering ....................... 261
11.2 History of Cell Patterning and Direct Writing
Biomaterials .......................................... 262
11.3 Matrix-Assisted Pulsed Laser Evaporation Direct
Write ................................................. 264
11.4 Preparation of a Ribbon for Direct Write of Cells ..... 267
11.5 Combinatorial Libraries of Idealized Constructs ....... 268
11.6 Current MAPLE DW for Tissue Engineering,
Regenerative Medicine, and Cancer Research ............ 269
11.7 Musculoskeletal Tissue Engineering .................... 269
11.8 Breast Cancer Metastasis .............................. 271
11.9 The Neural Stem Cell Niche ............................ 272
11.10 Extracellular Matrix ................................. 273
11.11 Reproducibility and Repeatability .................... 274
11.12 Conclusions .......................................... 276
11.13 Future Directions .................................... 277
References ................................................. 277
12 Ultrafast Laser Processing of Glass Down to the Nano-
Scale
Koji Sugioka ............................................... 279
12.1 Introduction .......................................... 279
12.2 Features of Ultrafast Laser Processing ................ 280
12.2.1 Minimal Thermal Influence ...................... 280
12.2.2 Multiphoton Absorption ......................... 281
12.2.3 Internal Modification .......................... 282
12.3 Spatial Resolution of Ultrafast Laser Processing ...... 282
12.4 Surface Micromachining ................................ 284
12.5 Internal Modification of Refractive Index ............. 284
12.6 Fabrication of 3D Hollow Structures ................... 287
12.7 Integration of Optical Waveguide and Microfluidics
for Optofluidics Applications ......................... 289
12.8 Nanofabrication ....................................... 290
12.9 Conclusions ........................................... 292
References ................................................. 292
13 Free Electron Laser Synthesis of Functional Coatings
Peter Schaaf and Daniel Höche .............................. 295
13.1 Introduction .......................................... 296
13.1.1 The Free Electron Laser ........................ 296
13.1.2 Direct Laser Synthesis ......................... 297
13.1.3 Protective Coatings and TiN .................... 298
13.2 Experiments ........................................... 299
13.2.1 Sample Preparation and setup ................... 299
13.2.2 Analysis Methods ............................... 300
13.3 Results ............................................... 300
13.3.1 FEL Irradiation at CW-Mode ..................... 300
13.3.2 FEL Irradiation at Pulsed Mode ................. 302
13.4 Conclusions ........................................... 304
References ................................................. 305
14 PLD of Piezoelectric and Ferroelectric Materials
Maria Dinescu .............................................. 307
14.1 Introduction .......................................... 307
14.2 RF-Assisted Pulsed Laser Deposition ................... 309
14.3 Non-Ferroelectric Piezoelectrics ...................... 311
14.3.1 ZnO ............................................ 311
14.4 Conclusions ........................................... 327
References ................................................. 327
15 Lasers in Cultural Heritage: The Non-Contact
Intervention
Wolfgang Kautek ............................................ 331
15.1 Introduction .......................................... 331
15.2 Architectonic Structures and Sculptures ............... 332
15.3 Metallic Artefacts .................................... 335
15.4 Biogenetic Substrates ................................. 336
15.5 Technology ............................................ 336
15.6 Case Studies and Diagnostics .......................... 339
15.7 Conclusions ........................................... 346
References ................................................. 347
Index ......................................................... 351
|