Ghiaasiaan S.M. Convective heat and mass transfer (Cambridge; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGhiaasiaan S.M. Convective heat and mass transfer. - Cambridge; New York: Cambridge University Press, 2011. - xxiv, 524 p.: ill. - Ref.: p.501-516. - Ind.: p.517-524. - ISBN 978-1-107-00350-7
 

Оглавление / Contents
 
Preface ........................................................ xv
Frequently Used Notation ..................................... xvii
1  Thermophysical and Transport Fundamentals .................... 1
   1.1  Conservation Principles ................................. 1
        1.1.1  Lagrangian and Eulerian Frames ................... 1
        1.1.2  Mass Conservation ................................ 2
        1.1.3  Conservation of Momentum ......................... 3
        1.1.4  Conservation of Energy ........................... 6
   1.2  Multicomponent Mixtures ................................ 11
        1.2.1  Basic Definitions and Relations ................. 11
        1.2.2  Thermodynamic Properties ........................ 15
   1.3  Fundamentals of Diffusive Mass Transfer ................ 17
        1.3.1  Species Mass Conservation ....................... 17
        1.3.2  Diffusive Mass Flux and Fick's Law .............. 18
        1.3.3  Species Mass Conservation When Fick's Law
               Applies ......................................... 19
        1.3.4  Other Types of Diffusion ........................ 20
        1.3.5  Diffusion in Multicomponent Mixtures ............ 20
   1.4  Boundary and Interfacial Conditions .................... 22
        1.4.1  General Discussion .............................. 22
        1.4.2  Gas-Liquid Interphase ........................... 24
        1.4.3  Interfacial Temperature ......................... 24
        1.4.4  Sparingly Soluble Gases ......................... 27
        1.4.5  Convention for Thermal and Mass Transfer
               Boundary Conditions ............................. 30
   1.5  Transport Properties ................................... 31
        1.5.1  Mixture Rules ................................... 31
        1.5.2  Transport Properties of Gases and the Gas-
               Kinetic Theory .................................. 32
        1.5.3  Diffusion of Mass in Liquids .................... 37
   1.6  The Continuum Flow Regime and Size Convention for
        Flow Passages .......................................... 38
2  Boundary Layers ............................................. 44
   2.1  Boundary Layer on a Flat Plate ......................... 44
   2.2  Laminar Boundary-Layer Conservation Equations .......... 48
   2.3  Laminar Boundary-Layer Thicknesses ..................... 51
   2.4  Boundary-Layer Separation .............................. 53
   2.5  Nondimensionalization of Conservation Equations and
        Similitude ............................................. 54
   Problems .................................................... 58
3  External Laminar Flow: Similarity Solutions for Forced
   Laminar Boundary Layers ..................................... 61
   3.1  Hydrodynamics of Flow Parallel to a Flat Plate ......... 61
   3.2  Heat and Mass Transfer During Low-Velocity Laminar
        Flow Parallel to a Flat Plate .......................... 65
   3.3  Heat Transfer During Laminar Parallel Flow Over
        a Flat Plate With Viscous Dissipation .................. 71
   3.4  Hydrodynamics of Laminar Flow Past a Wedge ............. 73
   3.5  Heat Transfer During Laminar Flow Past a Wedge ......... 78
   3.6  Effects of Compressibility and Property Variations ..... 80
   Problems .................................................... 85
4  Internal Laminar Flow ....................................... 90
   4.1  Couette and Poiseuille Flows ........................... 90
   4.2  The Development of Velocity, Temperature, and
        Concentration Profiles ................................. 94
        4.2.1  The Development of Boundary Layers .............. 94
        4.2.2  Hydrodynamic Parameters of Developing Flow ...... 97
        4.2.3  The Development of Temperature and
               Concentration Profiles ......................... 100
   4.3  Hydrodynamics of Fully Developed Flow ................. 103
   4.4  Fully Developed Hydrodynamics and Developed
        Temperature or Concentration Distributions ............ 107
        4.4.1  Circular Tube .................................. 107
        4.4.2  Flat Channel ................................... 110
        4.4.3  Rectangular Channel ............................ 113
        4.4.4  Triangular Channel ............................. 113
        4.4.5  Concentric Annular Duct ........................ 114
   4.5  Fully Developed Hydrodynamics, Thermal or
        Concentration Entrance Regions ........................ 117
        4.5.1  Circular Duct With Uniform Wall Temperature
               Boundary Conditions ............................ 117
        4.5.2  Circular Duct With Arbitrary Wall Temperature
               Distribution in the Axial Direction ............ 124
        4.5.3  Circular Duct With Uniform Wall Heat Flux ...... 126
        4.5.4  Circular Duct With Arbitrary Wall Heat Flux
               Distribution in the Axial Coordinate ........... 129
        4.5.5  Flat Channel With Uniform Heat Flux Boundary
               Conditions ..................................... 130
        4.5.6  Flat Channel With Uniform Wall Temperature
               Boundary Conditions ............................ 132
        4.5.7  Rectangular Channel ............................ 135
   4.6  Combined Entrance Region .............................. 135
   4.7  Effect of Fluid Property Variations ................... 137
   Appendix 4A: The Sturm-Liouville Boundary-Value Problems ... 141
   Problems ................................................... 141
5  Integral Methods ........................................... 151
   5.1  Integral Momentum Equations ........................... 151
   5.2  Solutions to the Integral Momentum Equation ........... 153
        5.2.1  Laminar Flow of an Incompressible Fluid
               Parallel to a Flat Plate Without Wall
               Injection ...................................... 153
        5.2.2  Turbulent Flow of an Incompressible Fluid
               Parallel to a Flat Plate Without Wall
               Injection ...................................... 156
        5.2.3  Turbulent Flow of an Incompressible Fluid
               Over a Body of Revolution ...................... 158
   5.3  Energy Integral Equation .............................. 159
   5.4  Solutions to the Energy Integral Equation ............. 161
        5.4.1  Parallel Flow Past a Flat Surface .............. 161
        5.4.2  Parallel Flow Past a Flat Surface With an
               Adiabatic Segment .............................. 163
        5.4.3  Parallel Flow Past a Flat Surface With
               Arbitrary Wall Surface Temperature or Heat
               Flux ........................................... 165
   5.5  Approximate Solutions for Flow Over Axisymmetric
        Bodies ................................................ 167
   Problems ................................................... 173
6  Fundamentals of Turbulence and External Turbulent Flow ..... 177
   6.1  Laminar-Turbulent Transition and the Phenomenology
        of Turbulence ......................................... 177
   6.2  Fluctuations and Time (Ensemble) Averaging ............ 180
   6.3  Reynolds Averaging of Conservation Equations .......... 181
   6.4  Eddy Viscosity and Eddy Diffusivity ................... 183
   6.5  Universal Velocity Profiles ........................... 185
   6.6  The Mixing-Length Hypothesis and Eddy Diffusivity
        Models ................................................ 188
   6.7  Temperature and Concentration Laws of the Wall ........ 192
   6.8  Kolmogorov Theory of the Small Turbulence Scales ...... 196
   6.9  Flow Past Blunt Bodies ................................ 200
   Problems ................................................... 205
7  Internal Turbulent Flow .................................... 208
   7.1  General Remarks ....................................... 208
   7.2  Hydrodynamics of Turbulent Duct Flow .................. 211
        7.2.1  Circular Duct .................................. 211
        7.2.2  Noncircular Ducts .............................. 217
   7.3  Heat Transfer: Fully Developed Flow ................... 218
        7.3.1  Universal Temperature Profile in a Circular
               Duct ........................................... 218
        7.3.2  Application of Eddy Diffusivity Models for
               Circular Ducts ................................. 221
        7.3.3  Noncircular Ducts .............................. 224
   7.4  Heat Transfer: Fully Developed Hydrodynamics,
        Thermal Entrance Region ............................... 224
        7.4.1  Circular Duct With Uniform Wall Temperature
               or Concentration ............................... 224
        7.4.2  Circular Duct With Uniform Wall Heat Flux ...... 226
        7.4.3  Some Useful Correlations for Circular Ducts .... 229
        7.4.4  Noncircular Ducts .............................. 231
   7.5  Combined Entrance Region .............................. 231
   Problems ................................................... 238
8  Effect of Transpiration on Friction, Heat, and Mass
   Transfer ................................................... 243
   8.1  Couette Flow Film Model ............................... 243
   8.2  Gas-Liquid Interphase ................................. 248
   Problems ................................................... 256
9  Analogy Among Momentum, Heat, and Mass Transfer ............ 258
   9.1  General Remarks ....................................... 258
   9.2  Reynolds Analogy ...................................... 259
   9.3  Prandtl-Taylor Analogy ................................ 261
   9.4  Von Kaiman Analogy .................................... 263
   9.5  The Martinelli Analogy ................................ 265
   9.6  The Analogy of Yu et al ............................... 265
   9.7  Chilton-Colburn Analogy ............................... 267
   Problems ................................................... 272
10 Natural Convection ......................................... 275
   10.1 Natural-Convection Boundary Layers on Flat Surfaces ... 275
   10.2 Phenomenology ......................................... 278
   10.3 Scaling Analysis of Laminar Boundary Layers ........... 280
   10.4 Similarity Solutions for a Semi-Infinite Vertical
        Surface ............................................... 285
   10.5 Integral Analysis ..................................... 289
   10.6 Some Widely Used Empirical Correlations for Flat
        Vertical Surfaces ..................................... 294
   10.7 Natural Convection on Horizontal Flat Surfaces ........ 295
   10.8 Natural Convection on Inclined Surfaces ............... 297
   10.9 Natural Convection on Submerged Bodies ................ 298
   10.10 Natural Convection in Vertical Flow Passages ......... 300
   10.11 Natural Convection in Enclosures ..................... 304
   10.12 Natural Convection in a Two-Dimensional Rectangle
         With Heated Vertical Sides ........................... 305
   10.13 Natural Convection in Horizontal Rectangles .......... 307
   10.14 Natural Convection in Inclined Rectangular
         Enclosures ........................................... 309
   10.15 Natural Convection Caused by the Combined Thermal
         and Mass Diffusion Effects ........................... 311
         10.15.1 Conservation Equations and Scaling
                 Analysis ..................................... 311
         10.15.2 Heat and Mass Transfer Analogy ............... 316
   10.16 Solutions for Natural Convection Caused by Combined
         Thermal and Mass Diffusion Effects ................... 317
   Problems ................................................... 327
11 Mixed Convection ........................................... 332
   11.1 Laminar Boundary-Layer Equations and Scaling
        Analysis .............................................. 332
   11.2 Solutions for Laminar Flow ............................ 337
   11.3 Stability of Laminar Flow and Laminar-Turbulent
        Transition ............................................ 341
   11.4 Correlations for Laminar External Flow ................ 343
   11.5 Correlations for Turbulent External Flow .............. 348
   11.6 Internal Flow ......................................... 349
        11.6.1 General Remarks ................................ 349
        11.6.2 Flow Regime Maps ............................... 351
   11.7 Some Empirical Correlations for Internal Flow ......... 351
   Problems ................................................... 358
12 Turbulence Models .......................................... 362
   12.1 Reynolds-Averaged Conservation Equations and the
        Eddy Diffusivity Concept .............................. 362
   12.2 One-Equation Turbulence Models ........................ 364
   12.3 Near-Wall Turbulence Modeling and Wall Functions ...... 367
   12.4 The K-ε Model ......................................... 371
        12.4.1 General Formulation ............................ 371
        12.4.2 Near-Wall Treatment ............................ 374
        12.4.3 Turbulent Heat and Mass Fluxes ................. 376
   12.5 Other Two-Equation Turbulence Models .................. 376
   12.6 The Reynolds Stress Transport Models .................. 377
        12.6.1 General Formulation ............................ 377
        12.6.2 Simplification for Heat and Mass Transfer ...... 380
        12.6.3 Near-Wall Treatment of Turbulence .............. 380
        12.6.4 Summary of Equations and Unknowns .............. 381
   12.7 Algebraic Stress Models ............................... 381
   12.8 Turbulent Models for Buoyant Flows .................... 382
   12.9 Direct Numerical Simulation ........................... 385
   12.10 Large Eddy Simulation ................................ 390
   12.11 Computational Fluid Dynamics ......................... 394
   Problems ................................................... 395
13 Flow and Heat Transfer in Miniature Flow Passages .......... 397
   13.1 Size Classification of Miniature Flow Passages ........ 397
   13.2 Regimes in Gas-Carrying Vessels ....................... 399
   13.3 The Slip Flow and Temperature-Jump Regime ............. 402
   13.4 Slip Couette Flow ..................................... 406
   13.5 Slip Flow in a Flat Channel ........................... 408
        13.5.1 Hydrodynamics of Fully Developed Flow .......... 408
        13.5.2 Thermally Developed Heat Transfer, UHF ......... 410
        13.5.3 Thermally Developed Heat Transfer, UWT ......... 413
   13.6 Slip Flow in Circular Microtubes ...................... 415
        13.6.1 Hydrodynamics of Fully Developed Flow .......... 415
        13.6.2 Thermally Developed Flow Heat Transfer, UHF .... 416
        13.6.3 Thermally Developed Flow Heat Transfer, UWT .... 418
        13.6.4 Thermally Developing Flow ...................... 420
   13.7 Slip Flow in Rectangular Channels ..................... 422
        13.7.1 Hydrodynamics of Fully Developed Flow .......... 422
        13.7.2 Heat Transfer .................................. 424
   13.8 Slip Flow in Other Noncircular Channels ............... 426
   13.9 Compressible Flow in Microchannels with Negligible
        Rarefaction ........................................... 427
        13.9.1 General Remarks ................................ 427
        13.9.2 One-Dimensional Compressible Flow of an Ideal
               Gas in a Constant-Cross-Section Channel ........ 428
   13.10 Continuum Flow in Miniature Flow Passages ............ 431
   Problems ................................................... 441
APPENDIX A: Constitutive Relations in Polar Cylindrical and
   Spherical Coordinates ...................................... 449
APPENDIX B: Mass Continuity and Newtonian Incompressible
   Fluid Equations of Motion in Polar Cylindrical and
   Spherical Coordinates ...................................... 451
APPENDIX C: Energy Conservation Equations in Polar
   Cylindrical and Spherical Coordinates for Incompressible
   Fluids With Constant Thermal Conductivity .................. 453
APPENDIX D: Mass-Species Conservation Equations in Polar
   Cylindrical and Spherical Coordinates for Incompressible
   Fluids ..................................................... 454
APPENDIX E: Thermodynamic Properties of Saturated Water and
   Steam ...................................................... 456
APPENDIX F: Transport Properties of Saturated Water and
   Steam ...................................................... 458
APPENDIX G: Properties of Selected Ideal Gases at
   1 Atmosphere ............................................... 459
APPENDIX H: Binary Diffusion Coefficients of Selected Gases
   in Air at 1 Atmosphere ..................................... 465
APPENDIX I: Henry's Constant, in bars, of Dilute Aqueous
   Solutions of Selected Substances at Moderate Pressures ..... 466
APPENDIX J: Diffusion Coefficients of Selected Substances in
   Water at Infinite Dilution at 25°C ......................... 467
APPENDIX К: Lennard-Jones Potential Model Constants for
   Selected Molecules ......................................... 468
APPENDIX L: Collision Integrals for the Lennard-Jones
   Potential Model ............................................ 469
APPENDIX M: Some RANS-Type Turbulence Models .................. 470
   M.l  The Spalart-Allmaras Model ............................ 470
   M.2  The K-ω Model.......................................... 472
   M.3  The K-ε Nonlinear Reynolds Stress Model ............... 475
   M.4  The RNG K-ε Model ..................................... 477
   M.5  The Low-Re RSM of Launder and Shima ................... 478
APPENDIX N: Physical Constants ................................ 480
APPENDIX O: Unit Conversions .................................. 482
APPENDIX P: Summary of Important Dimensionless Numbers ........ 485
APPENDIX Q: Summary of Some Useful Heat Transfer and
   Friction-Factor Correlations ............................... 487

References .................................................... 501
Index ......................................................... 517


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:18 2019. Размер: 22,323 bytes.
Посещение N 1509 c 20.11.2012