Figures and Table .............................................. xv
Foreword
by Alan Schriesheim ........................................... xix
Foreword
by Wm. Howard Arnold .......................................... xxi
Foreword
by Charles Kelber ........................................... xxiii
Nomenclature ................................................ xxvii
Preface ...................................................... xxxv
Acknowledgments ............................................. xliii
1 Introduction ................................................. 1
1.1 Background information about multiphase flow ............ 2
1.2 Significance of phase configurations in multiphase
flow .................................................... 6
1.3 Need for universally accepted formulation for
multiphase flow conservation equations .................. 8
2 Averaging relations ......................................... 12
2.1 Preliminaries .......................................... 13
2.2 Local volume average and intrinsic volume average ...... 14
2.3 Local area average and intrinsic area average .......... 15
2.4 Local volume averaging theorems and their length-
scale restrictions ..................................... 17
2.5 Conservative criterion of minimum size of
characteristic length of local averaging volume ........ 21
3 Phasic conservation equations and interfacial balance
equations ................................................... 23
3.1 Phasic conservation equations .......................... 23
3.2 Interfacial balance equations .......................... 25
4 Local volume-averaged conservation equations and
interfacial balance equations ............................... 27
4.1 Local volume-averaged mass conservation equation of
a phase and its interfacial balance equation ........... 27
4.2 Local volume-averaged linear momentum equation and
its interfacial balance equation ....................... 29
4.3 Local volume-averaged total energy equation and its
interfacial balance equation ........................... 33
4.4 Local volume-averaged internal energy equation and
its interfacial balance equation ....................... 36
4.5 Local volume-averaged enthalpy equation and its
interfacial balance equation ........................... 38
4.6 Summary of local volume-averaged conservation
equations .............................................. 41
4.6.1 Local volume-averaged mass conservation
equation ........................................ 41
4.6.2 Local volume-averaged linear momentum
conservation equation ........................... 42
4.6.3 Local volume-averaged energy conservation
equations ....................................... 43
4.6.3.1 In terms of total energy Ek,
Ek = uk + ½Uk• Uk ...................... 43
4.6.3.2 In terms of internal energy uk ......... 44
4.6.3.3 In terms of enthalpy hk ................ 45
4.7 Summary of local volume-averaged interfacial
balance equations ...................................... 45
4.7.1 Local volume-averaged interfacial mass balance
equation ........................................ 45
4.7.2 Local volume-averaged interfacial linear
momentum balance equation ....................... 46
4.7.3 Local volume-averaged interfacial energy
balance equation ................................ 46
4.7.3.1 Total energy balance (capillary
energy ignored) ........................ 47
4.7.3.2 Internal energy balance (dissipation
and reversible work ignored) ........... 47
4.7.3.3 Enthalpy balance (capillary energy
ignored) ............................... 47
5 Time averaging of local volume-averaged conservation
equations or time-volume-averaged conservation equations
and interfacial balance equations ........................... 48
5.1 Basic postulates ....................................... 48
5.2 Useful observation without assuming υ'k = 0 ............ 53
5.3 Time-volume-averaged mass conservation equation ........ 54
5.4 Time-volume-averaged interfacial mass balance
equation ............................................... 59
5.5 Time-volume-averaged linear momentum conservation
equation ............................................... 60
5.6 Time-volume-averaged interfacial linear momentum
balance equation ....................................... 73
5.7 Time-volume-averaged total energy conservation
equation ............................................... 75
5.8 Time-volume-averaged interfacial total energy balance
equation (capillary energy ignored) .................... 88
5.9 Time-volume-averaged internal energy conservation
equation ............................................... 90
5.10 Time-volume-averaged interfacial internal energy
balance equation ...................................... 100
5.11 Time-volume-averaged enthalpy conservation equation ... 101
5.12 Time-volume-averaged interfacial enthalpy balance
equation (capillary energy ignored) ................... 109
5.13 Summary of time-volume-averaged conservation
equations ............................................. 110
5.13.1 Time-volume-averaged conservation of mass
equation ....................................... 110
5.13.2 Time-volume-averaged linear momentum
conservation equation .......................... 111
5.13.3 Time-volume-averaged total energy
conservation equation .......................... 112
5.13.4 Time-volume-averaged internal energy
conservation equation .......................... 113
5.13.5 Time-volume-averaged enthalpy conservation
equation ....................................... 113
5.14 Summary of time-volume-averaged interfacial balance
equations ............................................. 114
5.14.1 Time-volume-averaged interfacial mass balance
equation ....................................... 114
5.14.2 Time-volume-averaged interfacial linear
momentum balance equation ...................... 115
5.14.3 Time-volume-averaged interfacial total energy
balance equation ............................... 115
5.14.4 Time-volume-averaged interfacial internal
energy balance equation ........................ 115
5.14.5 Time-volume-averaged interfacial enthalpy
balance equation ............................... 116
6 Time averaging in relation to local volume averaging and
time-volume averaging versus volume-time averaging ......... 117
6.1 Time averaging in relation to local volume
averaging ............................................. 117
6.2 Time-volume averaging versus volume-time averaging .... 121
7 Novel porous media formulation for single phase and
single phase with multicomponent applications .............. 125
7.1 COMMIX code capable of computing detailed microflow
fields with fine computational mesh and high-order
differencing scheme ................................... 128
7.1.1 Case (1): Von Karmann vortex shedding
analysis ....................................... 128
7.1.2 Case (2): Shear-driven cavity flow analysis .... 134
7.1.3 Some observations about higher-order
differencing schemes ........................... 138
7.2 COMMIX code capable of capturing essential
both macroflow field and macrotemperature
distribution with a coarse computational mesh ......... 140
7.2.1 Case (6): Natural convection phenomena in a
prototypical pressurized water reactor during
a postulated degraded core accident ............ 140
7.2.1.1 Heat transfer ......................... 144
7.2.1.2 Natural convection patterns ........... 145
7.2.1.3 Temperature distribution .............. 145
7.2.2 Case (7): Analysis of large-scale tests for
AP-600 passive containment cooling system ...... 149
7.2.2.1 Circumferential temperature
distribution .......................... 152
7.2.2.2 Condensation and evaporation rate ..... 154
7.2.2.3 Air partial pressure and containment
pressure .............................. 155
7.2.2.4 Condensation and evaporating film
thickness ............................. 156
7.2.2.5 Temperature distributions at various
locations ............................. 156
7.3 Conclusion ............................................ 158
8 Discussion and concluding remarks .......................... 160
8.1 Time averaging of local volume-averaged phasic
conservation equations ................................ 161
8.1.1 Length-scale restriction for the local volume
average ........................................ 162
8.1.2 Time scale restriction in the time averaging ... 163
8.1.3 Time-volume-averaged conservation equations
are in differential-integral form .............. 165
8.1.4 Unique features of time-volume-averaged
conservation equations ......................... 166
8.2 Novel porous media formulation ........................ 168
8.2.1 Single-phase implementation .................... 169
8.2.2 Multiphase flow ................................ 171
8.3 Future research ....................................... 172
8.4 Summary ............................................... 176
APPENDIX A Staggered-grid computational system ............... 179
APPENDIX B Physical interpretation of αk = -υ-1∫Ak nk dA
with γυ = l ....................................... 184
APPENDIX C Evaluation of t for non-Newtonian fluids
with γυ = 0 ....................................... 188
APPENDIX D Evaluation of t for isotropic conduction
with variable conductivity and with γυ = 1 ........ 191
References .................................................... 193
Index ......................................................... 201
|