Preface ..................................................... XI
List of Contributors ...................................... XIII
Part I From Model Systems to Crop Improvement .................. 1
1 General Stress Response of a Model Bacterium ................. 3
Abram Aertsen, Philipp De Spiegeleer, Laurence Van
Melderen, and Chris W. Michiels
1.1 Introduction ............................................ 3
1.2 General Stress Response ................................. 3
1.2.1 The σS Regulatory Network ........................ 4
1.2.2 E. coli Osmotic Shock Resistance ................. 5
1.2.3 E. coli Acid Resistance: An Example of
a Differentially Controlled σS Module ............ 6
1.3 Regulation of σS ........................................ 7
1.3.1 Transcriptional Regulation of σS ................. 7
1.3.2 Translational Regulation of σS ................... 8
1.3.3 Post-Translational Regulation of σS .............. 9
1.3.4 Competition for RNAP and Promoters .............. 10
1.4 Conclusions ............................................ 11
2 Moss as a Model System for Plant Stress Responses ........... 17
Andrew C. Cuming
2.1 Introduction ........................................... 17
2.2 Model Systems .......................................... 19
2.3 Physcomitrella as a Model System ....................... 22
2.4 Water Stress and Abscisic Acid ......................... 24
2.5 T. ruralis: A Model for Poikilohydry ................... 28
2.6 Cold Stress and Abscisic Acid .......................... 29
2.7 Future Perspectives .................................... 30
3 Emerging Trends in Functional Genomics for Stress
Tolerance in Crop Plants .................................... 37
Swatismita Ray, Prasant K. Dansana, Avantika Bhaskar,
Jitender Ciri, Sanjay Kapoor, Jitendra P. Khurana, and
Akhilesh K. Tyagi
3.1 Introduction ........................................... 37
3.2 Abiotic Stresses Encountered by Plants ................. 38
3.3 Genome-Wide Investigations to Understand Components
Involved in Abiotic Stress Responses ................... 39
3.3.1 Transcriptome Analysis .......................... 39
3.3.2 Role of MicroRNAs in Stress ..................... 41
3.3.3 Analysis of Abiotic Stress-Responsive Genes
using Proteomic Approaches ...................... 42
3.4 Quantitative Trait Loci for Abiotic Stress Tolerance ... 44
3.5 Networking the Stress Response Gene Function ........... 44
3.5.1 Sensing Systems ................................. 44
3.5.2 Calcium and Calcium-Sensing Proteins ............ 45
3.5.3 МАРК Proteins: At the Crossroads of Signaling
Pathways ........................................ 47
3.5.4 Other Pathways .................................. 48
3.5.5 Transcription Factors at the Junction ........... 49
3.6 Functional Characterization of Stress Response Genes
by the Transgenic Approach ............................. 51
3.7 Conclusions ............................................ 52
Part II Stress Responses and Newly Involved Plant Hormones ..... 65
4 Stress Physiology of Higher Plants: Cross-Talk between
Abiotic and Biotic Stress Signaling ......................... 67
Miki Fujita, Yasunari Fujita, Fuminori Takahashi, Kazuko
Yamaguchi-Shinozaki, and Kazuo Shinozaki
4.1 Introduction ........................................... 67
4.2 Cuticles and Stomata ................................... 68
4.3 Hormone Signaling Governs Biotic and Abiotic Stress
Responses .............................................. 71
4.4 Roles of ROS at Points of Convergence between Biotic
and Abiotic Stress Response Pathways ................... 73
4.5 Transcription Factors Involved in the Cross-talk
between Abiotic and Biotic Stress Signaling ............ 74
4.6 Mitogen-Activated Protein Kinase Cascade ............... 76
4.7 Effects of Humidity and Temperature on Biotic Stress
Responses .............................................. 78
4.8 Conclusions ............................................ 79
5 Jasmonates in Stress, Growth, and Development ............... 91
Claus Wastemack
5.1 Introduction ........................................... 91
5.2 JA Biosynthesis ........................................ 92
5.3 JA Metabolism .......................................... 95
5.4 Bound OPDA - Arabidopsides ............................. 97
5.5 Mutants of JA Biosynthesis and Signaling ............... 98
5.6 COI1-JAZ-JA-Ile-Mediated JA Signaling ................. 101
5.7 Transcription Factors Involved in JA Signaling ........ 104
5.8 Jasmonates and Oxylipins in Development ............... 106
5.9 Conclusions ........................................... 108
6 Brassinosteroids Confer Stress Tolerance ................... 119
Uday K. Divi and Priti Krishna
6.1 I ntroduction ......................................... 119
6.2 BR Signaling .......................................... 120
6.3 BR Increases Stress Tolerance ......................... 121
6.3.1 Temperature Stress ............................. 121
6.3.2 Salt Stress .................................... 123
6.3.3 Drought Stress ................................. 123
6.3.4 Pathogen Attack ................................ 124
6.3.5 Other Stresses ................................. 126
6.4 Anticancer and Antiviral Effects ...................... 126
6.5 Genetic Evidence for a Role of BR in Plant Stress
Responses ............................................. 126
6.6 BR-Independent Role of BAK1 in Innate Immunity and
Cell Death ............................................ 127
6.7 Systematic Study to Dissect the Role of BR in
Abiotic Stress Tolerance .............................. 130
6.8 Future Directions ..................................... 131
7 Cold, Salinity, and Drought Stress ......................... 137
Narendra Tuteja
7.1 Introduction .......................................... 137
7.2 Abiotic Stress Response and Stress-Induced Genes ...... 139
7.3 Cold Stress ........................................... 141
7.3.1 Effect of Low-Temperature Stress on Plant
Physiology ..................................... 141
7.3.2 Cold Acclimation ............................... 142
7.3.3 Function of Cold-Regulated Genes in Freezing
Tolerance ...................................... 142
7.3.4 Calcium Signaling in Cold Stress Response ...... 144
7.4 Salinity Stress ....................................... 144
7.4.1 Negative Impact of Salinity Stress ............. 146
7.4.2 Calcium Signaling and SOS Pathways in
Relation to Salinity Stress .................... 147
7.4.3 ABA and Transcription Factors in Salinity
Stress Tolerance ............................... 148
7.4.4 Water Stress due to Salinity ................... 149
7.4.5 Proline and GB in Salinity Stress .............. 149
7.4.6 ROS in Salinity Stress ......................... 150
7.5 Drought Stress ........................................ 151
7.5.1 Effect of Drought on Stomata and
Photosynthesis ................................. 152
7.5.2 Sugars and other Osmolytes in Response to
Drought Stress ................................. 153
7.5.3 Phospholipid Signaling in Drought Stress ....... 154
7.6 Conclusions and Future Prospects ...................... 154
8 Heavy Metal Stress in Plants ............................... 161
Ann Cuypers, Karen Smeets, and Jaco Vangronsveld
8.1 Introduction .......................................... 161
8.2 Uptake and Distribution of Metals in Plants ........... 162
8.3 Metal Stress Affects the Plant's Physiology ........... 163
8.4 Unraveling the Cellular Responses of Metal Stress ..... 165
8.4.1 Metal-Induced Oxidative Stress ................. 166
8.5 Signaling Under Metal Stress .......................... 167
8.6 Conclusions ........................................... 170
9 Systematic Analysis of Superoxide-Dependent Signaling in
Plant Cells: Usefulness and Specificity of Methyl
Viologen Application ....................................... 179
Simone Jacob and Karl-Josef Dietz
9.1 Reactive Oxygen Species and Antioxidant Defense ....... 179
9.1.1 Reactive Oxygen Species - Generation and
Biological Relevance ........................... 179
9.1.2 Detoxification of ROS - Antioxidative Network
in Plants ...................................... 182
9.2 Methyl Viologen: From Redox Indicator and Herbicide
to Application as Effector in Oxidative Stress
Investigation ......................................... 183
9.2.1 General Considerations to Methyl Viologen as
Herbicide and Toxin ............................ 183
9.2.2 Mechanism of Methyl Viologen Toxicity in
Plants and Animals ............................. 185
9.2.3 Lipid Peroxidation as a Consequence of
Oxidative Stress upon Methyl Viologen
Application .................................... 186
9.2.4 Requirement of the Antioxidative Network upon
Methyl Viologen Application .................... 186
9.3 Gaining Insights into Superoxide Anion-Mediated
Signaling in Plants - Goals and Limitations of
Methyl Viologen Application ........................... 187
9.3.1 Superoxide Anion and Hydrogen Peroxide
Signaling: A Problem of Differentiation? ....... 187
9.3.2 Transgenic Plants as a Powerful Tool towards
Understanding the Participation of Superoxide
Anion in Signal Transduction Processes ......... 187
9.3.3 Towards Understanding of Superoxide Anion
Signaling in Plants ............................ 190
9.4 Conclusions ........................................... 191
Part III From Transcriptomics and Proteomics to Signaling
Networks ............................................ 197
10 Insights into the Arabidopsis Abiotic Stress Response
from the AtGenExpress Expression Profile Dataset ........... 199
Dierk Wanke, Kenneth W. Berendzen, Joachim Kilian, and
Klaus Harter
10.1 Introduction .......................................... 199
10.2 The AtGenExpress Abiotic Stress Experiment ............ 200
10.3 General Findings ...................................... 201
10.4 The Nine Stresses ..................................... 204
10.4.1 UV-B Light Stress .............................. 204
10.4.2 Osmotic Stress ................................. 206
10.4.3 Salt Stress .................................... 208
10.4.4 Cold Stress .................................... 209
10.4.5 Drought Stress ................................. 210
10.4.6 Heat Stress .................................... 211
10.4.7 Wounding Stress ................................ 211
10.4.8 Genotoxic Stress ............................... 212
10.4.9 Oxidative Stress ............................... 213
10.5 Signal Integration .................................... 213
10.6 Novel Approaches and Future Developments .............. 221
10.7 Conclusions ........................................... 221
11 Integrative Approaches to Elucidate and Analyze Protein
Interaction and Signaling Networks ......................... 227
Sergio de la Fuente van Bentem, Alberto de la Fuente,
and Heribert Hirt
11.1 Introduction .......................................... 227
11.2 Protein Networks ...................................... 228
11.2.1 Introduction to Protein Networks ............... 228
11.2.2 CNA ............................................ 229
11.3 PINs .................................................. 230
11.3.1 Toward Global Arabidopsis PINs ................. 231
11.3.2 An Arabidopsis PIN of Calmodulin- and
Calmodulin-Like-Binding Proteins ............... 240
11.4 PSNs .................................................. 240
11.4.1 Introduction to PSNs ........................... 240
11.4.2 From Perturbations and Responses to PSNs ....... 241
11.4.3 High-Throughput Approaches to Create
Perturbations and to Measure Responses ......... 242
11.4.4 A NetworKIN Approach to Construct Plant
Phosphorylation Networks ....................... 243
11.5 Future Outlook on Plant Networks ...................... 245
Index ...................................................... 249
|