Howell J.R. Thermal radiation heat transfer (Boca Raton; London, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаHowell J.R. Thermal radiation heat transfer / J.R.Howell, R.Siegel, M.P.Mengüҫ. - 5th ed. - Boca Raton; London: CRC Press; Taylor & Francis Group, 2011. - xxx, 957 p.: ill. - Ind.: p.951-957. - ISBN 978-1-4398-0533-6
 

Оглавление / Contents
 
Preface to the Fifth Edition .................................. xxi
List of Symbols ............................................. xxiii
Chapter 1 Introduction to Radiative Transfer .................... 1
   1.1 Importance of Thermal Radiation in Engineering ........... 3
   1.2 Thermal Energy Transfer .................................. 4
   1.3 Thermal Radiative Transfer ............................... 6
   1.4 Radiative Energy Exchange and Radiative Intensity ........ 8
       1.4.1 Solid Angle ........................................ 9
       1.4.2 Spectral Radiative Intensity ...................... 10
   1.5 Characteristics of Emission ............................. 11
       1.5.1 Perfect Emitter ................................... 13
       1.5.2 Radiation Isotropy in a Black Enclosure ........... 13
       1.5.3 Perfect Emitter in Each Direction and
             Wavelength ........................................ 13
       1.5.4 Total Radiation into Vacuum Is a Function
             Only of Temperature ............................... 14
       1.5.5 Blackbody Intensity and Its Directional
             Independence ...................................... 14
       1.5.6 Blackbody Emissive Power: Cosine-Law
             Dependence ........................................ 16
       1.5.7 Hemispherical Spectral Emissive Power of 
             a Blackbody ....................................... 16
       1.5.8 Planck's Law: Spectral Distribution of 
             Emissive Power .................................... 17
       1.5.9 Approximations for Blackbody Spectral
             Distribution ...................................... 20
             1.5.9.1 Wien's Formula ............................ 20
             1.5.9.2 Rayleigh-Jeans Formula .................... 21
       1.5.10 Wien's Displacement Law .......................... 21
       1.5.11 Total Blackbody Intensity and Emissive
              Power ............................................ 23
       1.5.12 Blackbody Radiation within a Spectral
              Band ............................................. 24
       1.5.13 Summary of Blackbody Properties .................. 28
   1.6 Radiative Energy Loss and Gain along a Line-of-Sight .... 31
       1.6.1 Radiative Energy Loss due to Absorption 
             and Scattering .................................... 31
       1.6.2 Mean Penetration Distance ......................... 32
       1.6.3 Optical Thickness ................................. 33
       1.6.4 Radiative Energy Gain due to Emission ............. 34
       1.6.5 Radiative Energy Gain due to In-Scattering ........ 35
   1.7 Radiative Transfer Equation ............................. 37
   1.8 Radiative Transfer in Nonparticipating Enclosures ....... 38
   1.9 Concluding Remarks and Historical Notes ................. 41
   Homework .................................................... 42
Chapter 2 Definitions of Properties at Interfaces .............. 47
   2.1 Introduction ............................................ 47
       2.1.1 Nomenclature for Properties ....................... 49
       2.1.2 Notation .......................................... 50
   2.2 Emissivity .............................................. 50
       2.2.1 Directional Spectral Emissivity 
             ελ(θ,φ,Τ).......................................... 51
       2.2.2 Directional Total Emissivity ε(θ,φ,Τ) ............. 53
       2.2.3 Hemispherical Spectral Emissivity 
             ελ(Τ).............................................. 54
       2.2.4 Hemispherical Total Emissivity ε(Τ) ............... 55
   2.3 Absorptivity ............................................ 59
       2.3.1 Directional Spectral Absorptivity 
             αλii,Τ) ........................................ 59
       2.3.2 Kirchhoff's Law ................................... 60
       2.3.3 Directional Total Absorptivity
             α(θii,Τ) ... ..................................... 61
       2.3.4 Kirchhoff's Law for Directional Total Properties .. 61
       2.3.5 Hemispherical Spectral Absorptivity
             αλ(Τ) ........... ................................. 62
       2.3.6 Hemispherical Total Absorptivity α(Τ) ............. 63
       2.3.7 Diffuse-Gray Surface .............................. 65
   2.4 Reflectivity ............................................ 66
       2.4.1 Spectral Reflectivities ........................... 66
             2.4.1.1 Bidirectional Spectral Reflectivity
                     ρ(θrrii) ............................. 66
             2.4.1.2 Reciprocity for Bidirectional Spectral
                     Reflectivity .............................. 66
             2.4.1.3 Directional Spectral Reflectivities ....... 68
             2.4.1.4 Reciprocity for Directional Spectral
                     Reflectivity .............................. 68
             2.4.1.5 Hemispherical Spectral
                     Reflectivity ρλ ........................... 69
             2.4.1.6 Limiting Cases for Spectral Surfaces ...... 69
       2.4.2 Total Reflectivities .............................. 71
             2.4.2.1 Bidirectional Total Reflectivity
                     ρ(θrrii) ............................. 71
             2.4.2.2 Reciprocity for Bidirectional Total
                     Reflectivity .............................. 71
             2.4.2.3 Directional Total Reflectivity
                     ρ(θii)or ρ(θrr) ........................ 71
             2.4.2.4 Reciprocity for Directional Total
                     Reflectivity .............................. 72
             2.4.2.5 Hemispherical Total Reflectivity,ρ ........ 72
       2.4.3 Summary of Restrictions on Reflectivity
             Reciprocity Relations ............................. 72
   2.5 Transmissivity at an Interface .......................... 72
       2.5.1 Spectral Transmissivities ......................... 73
             2.5.1.1 Bidirectional Spectral Transmissivity
                     τλiitt,Τ) .......................... 73
             2.5.1.2 Directional Spectral Transmissivities
                     τλii) .................................. 73
             2.5.1.3 Hemispherical Spectral Transmissivity
                     τλ ........................................ 74
       2.5.2 Total Transmissivities ............................ 74
             2.5.2.1 Bidirectional Total Transmissivity
                     τ(θiitt) ............................. 75
             2.5.2.2 Directional Total Transmissivities
                     τ(θii) .................................. 75
             2.5.2.3 Hemispherical-Directional Total
                     Transmissivity τ(θtt) ................... 75
             2.5.2.4 Hemispherical Total Transmissivity τ ...... 76
   2.6 Relations among Reflectivity, Absorptivity,
       Emissivity, and Transmissivity .......................... 76
   Homework .................................................... 80
Chapter 3 Radiative Properties of Opaque Materials ............. 87
   3.1 Introduction ............................................ 87
   3.2 Electromagnetic Wave Theory Predictions ................. 87
       3.2.1 Dielectric Materials .............................. 88
             3.2.1.1 Reflection and Refraction at the 
                     Interface between Two Perfect 
                     Dielectrics (k → 0) ....................... 88
             3.2.1.2 Reflectivity .............................. 90
             3.2.1.3 Emissivity ................................ 91
       3.2.2 Radiative Properties of Metals .................... 94
             3.2.2.1 Electromagnetic Relations for 
                     Incidence on an Absorbing Medium .......... 94
             3.2.2.2 Reflectivity and Emissivity Relations
                     for Metals (Large k) ...................... 95
             3.2.2.3 Relations between Radiative Emission
                     and Electrical Properties ................ 100
   3.3 Extensions of the Theory for Radiative Properties ...... 105
   3.4 Measured Properties of Real Dielectric Materials ....... 106
       3.4.1 Variation of Total Properties with Surface
             Temperature ...................................... 110
             3.4.1.1 Effect of Surface Roughness .............. 112
       3.4.2 Properties of Semiconductors and
             Superconductors .................................. 116
   3.5 Measured Properties of Metals .......................... 117
       3.5.1 Directional and Spectral Variations .............. 117
       3.5.2 Effect of Surface Temperature .................... 118
       3.5.3 Effect of Surface Roughness ...................... 120
       3.5.4 Effect of Surface Impurities ..................... 125
       3.5.5 Molten Metals .................................... 129
   3.6 Selective and Directional Opaque Surfaces .............. 131
       3.6.1 Characteristics of Solar Radiation ............... 131
             3.6.1.1 Solar Constant ........................... 131
             3.6.1.2 Solar Radiating Temperature .............. 131
       3.6.2 Modification of Surface Spectral 
             Characteristics .................................. 131
       3.6.3 Modification of Surface Directional
             Characteristics .................................. 137
   3.7 Concluding Remarks ..................................... 139
   Homework ................................................... 139
Chapter 4 Configuration Factors for Diffuse Surfaces
          with Uniform Radiosity .............................. 151
   4.1 Radiative Transfer Equation for Surfaces Separated 
       by a Transparent Medium ................................ 151
       4.1.1 Enclosures with Diffuse Surfaces ................. 152
       4.1.2 Enclosures with Directional (Nondiffuse) and
             Spectral(Nongray) Surfaces ....................... 153
   4.2 Geometric Configuration Factors between Two Surfaces ... 153
       4.2.1 Configuration Factor for Energy Exchange between
             Diffuse Differential Areas ....................... 153
             4.2.1.1 Reciprocity for Differential-Element 
                     Configuration Factors .................... 155
             4.2.1.2 Sample Configuration Factors between
                     Differential Elements .................... 155
       4.2.2 Configuration Factor between a Differential Area
             Element and a Finite Area ........................ 157
             4.2.2.1 Reciprocity Relation for Configuration
                     Factor between Differential and Finite
                     Areas .................................... 159
             4.2.2.2 Configuration Factors between Differential
                     and a Finite Areas ....................... 159
       4.2.3 Configuration Factor and Reciprocity for 
             Two Finite Areas ................................. 161
   4.3 Methods for Determining Configuration Factors .......... 163
       4.3.1 Configuration-Factor Algebra ..................... 163
             4.3.1.1 Configuration Factors Determined by Use
                     of Symmetry .............................. 167
       4.3.2 Configuration-Factor Relations in Enclosures ..... 170
       4.3.3 Techniques for Evaluating Configuration Factors .. 172
             4.3.3.1 Hottel's Crossed-String Method ........... 172
             4.3.3.2 Contour Integration ...................... 176
             4.3.3.3 Differentiation of Known Factors ......... 182
       4.3.4 Unit-Sphere and Hemicube Methods ................. 185
       4.3.5 Direct Numerical Integration ..................... 187
       4.3.6 Computer Programs for Evaluation of Configuration
             Factors .......................................... 187
   4.4 Constraints on Configuration Factor Accuracy ........... 188
   4.5 Compilation of Known Configuration Factors and Their
       References—Appendix C and Web Catalog .................. 189
   Homework ................................................... 190
Chapter 5 Radiation Exchange in Enclosures Composed of
          Black and/or Diffuse-Gray Surfaces .................. 205
   5.1 Approximations and Restrictions for Analysis of 
       Enclosures with Black and/or Diffuse-Gray Surfaces ..... 205
   5.2 Radiative Transfer for Black Surfaces .................. 206
       5.2.1 Transfer Between Black Surfaces by Use
             of Configuration Factors ......................... 208
       5.2.2 Radiation Exchange in a Black Enclosure .......... 208
   5.3 Radiation Between Finite Diffuse-Gray Areas ............ 211
       5.3.1 Net-Radiation Method for Enclosures .............. 211
             5.3.1.1 System of Equations Relating Surface
                     Heating Q and Surface Temperature T ...... 218
             5.3.1.2 Solution Method in Terms of Radiosity J .. 222
       5.3.2 Enclosure Analysis in Terms of Energy Absorbed 
             at Surface ....................................... 224
       5.3.3 Enclosure Analysis by Use of Transfer Factors .... 225
       5.3.4 Matrix Inversion for Enclosure Equations ......... 226
   5.4 Radiation Analysis Using Infinitesimal Areas ........... 231
       5.4.1 Generalized Net-Radiation Method Using
             Infinitesimal Areas .............................. 231
             5.4.1.1 Relations between Surface Temperature T
                     and Surface Heat Flux q .................. 234
             5.4.1.2 Solution Method in Terms of Outgoing
                     Radiative Flux J ......................... 235
             5.4.1.3 Special Case When Imposed Heat Flux
                     q Is Specified for All Surfaces .......... 235
       5.4.2 Methods for Solving Integral Equations ........... 243
             5.4.2.1 Numerical Integration .................... 244
             5.4.2.2 Analytical Solutions ..................... 245
             5.4.2.3 Exact Solution of Integral Equation for
                     Radiation from a Spherical Cavity ........ 246
       5.4.3 General Boundary Conditions that Provide Inverse
             Problems ......................................... 248
   5.5 Computer Programs for Enclosure Analysis ............... 248
   Homework ................................................... 249
Chapter 6 Exchange of Thermal Radiation among Nondiffuse
          Nongray Surfaces .................................... 269
   6.1 Introduction ........................................... 269
   6.2 Enclosure Theory for Diffuse Nongray Surfaces .......... 269
       6.2.1 Parallel-Plate Geometry .......................... 271
       6.2.2 Spectral and Finite Spectral Band Relations for 
             an Enclosure ..................................... 274
       6.2.3 Semigray Approximations .......................... 275
   6.3 Directional-Gray Surfaces .............................. 276
   6.4 Surfaces with Directionally and Spectrally Dependent
       Properties ............................................. 281
   6.5 Radiation Exchange in Enclosures with Some Specularly
       Reflecting Surfaces .................................... 289
       6.5.1 Some Situations with Simple Geometries ........... 289
       6.5.2 Ray Tracing and the Construction of Images ....... 293
       6.5.3 Radiative Transfer by Means of Simple Specular
             Surfaces for Diffuse Energy Leaving a Surface .... 294
       6.5.4 Configuration-Factor Reciprocity for Specular
             Surfaces; Specular Exchange Factors .............. 299
   6.6 Net-Radiation Method in Enclosures Having Specular
       and Diffuse Reflecting Surfaces ........................ 304
       6.6.1 Enclosures with Planar Surfaces .................. 304
       6.6.2 Curved Specular Reflecting Surfaces .............. 311
   6.7 Multiple Radiation Shields ............................. 314
   6.8 Concluding Remarks ..................................... 317
   Homework ................................................... 319
Chapter 7 Radiation Combined with Conduction and
          Convection at Boundaries ............................ 337
   7.1 Introduction ........................................... 337
   7.2 Energy Relations and Boundary Conditions ............... 338
       7.2.1 General Relations ................................ 338
       7.2.2 Uncoupled and Coupled Energy Transfer Modes ...... 340
       7.2.3 Control Volume Approach for One- or Two-
             Dimensional Conduction along Thin Walls .......... 341
   7.3 Radiation Transfer with Conduction Boundary
       Conditions ............................................. 342
       7.3.1 Thin Fins with One- or Two-Dimensional
             Conduction ....................................... 342
             7.3.1.1 One-Dimensional Heat Flow ................ 342
             7.3.1.2 Two-Dimensional Heat Flow ................ 347
       7.3.2 Multidimensional and Transient Heat Conduction
             with Radiation ................................... 349
   7.4 Radiation with Convection and Conduction ............... 350
       7.4.1 Thin Radiating Fins with Convection .............. 350
       7.4.2 Channel Flows .................................... 352
       7.4.3 Free Convection with Radiation ................... 356
   7.5 Numerical Solution Methods ............................. 359
   7.6 Numerical Integration Methods for Use with Enclosure
       Equations .............................................. 360
       7.6.1 Trapezoidal Rule ................................. 360
       7.6.2 Simpson's Rule ................................... 362
       7.6.3 Other Integration Methods ........................ 363
   7.7 Numerical Formulations for Combined-Mode Energy
       Transfer ............................................... 363
       7.7.1 Finite-Difference Formulation .................... 364
       7.7.2 Finite-Element Method Formulation ................ 369
             7.7.2.1 Shape Function ........................... 370
             7.7.2.2 Galerkin Form for the Energy Equation .... 371
   7.8 Numerical Solution Techniques .......................... 374
       7.8.1 Successive Substitution Methods .................. 375
             7.8.1.1 Simple Successive Substitution (SSS) ..... 375
             7.8.1.2 Successive Underrelaxation (SUR) ......... 375
             7.8.1.3 Regulated Successive Underrelaxation
                     (RSUR) ................................... 375
       7.8.2 Newton-Raphson-Based Methods for Nonlinear 
             Problems ......................................... 376
             7.8.2.1 Modified Newton-Raphson (MNR) ............ 376
             7.8.2.2 Accelerated Newton-Raphson (ANR) ......... 377
       7.8.3 Applications of the Numerical Methods ............ 377
   7.9 Monte Carlo Method ..................................... 379
       7.9.1 Definition of Monte Carlo Method ................. 379
       7.9.2 Fundamentals of the Method ....................... 379
             7.9.2.1 Random Walk .............................. 379
             7.9.2.2 Choosing from Probability Distributions .. 380
             7.9.2.3 Random Numbers ........................... 383
             7.9.2.4 Evaluation of Uncertainty ................ 384
       7.9.3 Application to Thermal Radiative Transfer ........ 385
             7.9.3.1 Model of the Radiative Exchange Process .. 385
             7.9.3.2 Useful Functions ......................... 390
       7.9.4 Forward Monte Carlo .............................. 390
       7.9.5 Reverse Monte Carlo .............................. 393
       7.9.6 Results for Radiative Transfer ................... 396
             7.9.6.1 Literature on Radiation Exchange
                     among Surfaces ........................... 396
             7.9.6.2 Radiative Transmission through the Inside
                     of a Channel ............................. 397
             7.9.6.3 Extension to Directional and Spectral
                     Surfaces ................................. 398
             7.9.6.4 Application of Monte Carlo Methods
                     to Combined-Mode Problems ................ 399
   7.10 Concluding Remarks .................................... 399
        7.10.1 Verification ................................... 399
        7.10.2 Validation ..................................... 400
        7.10.3 Uncertainty Quantification ..................... 400
   Homework ................................................... 400
Chapter 8 Inverse Problems in Radiative Heat Transfer ......... 421
   8.1 Introduction to Inverse Problems ....................... 421
       8.1.1 Inverse Design and Data Analysis ................. 422
             8.1.1.1 Direct Inverse Solutions ................. 423
   8.2 General Inverse Solution Methods ....................... 425
       8.2.1 Regularization ................................... 426
       8.2.2 Optimization ..................................... 428
             8.2.2.1 Deterministic (Quasi-Newton) Approach .... 429
       8.2.3 Metaheuristic Approaches ......................... 429
             8.2.3.1 Simulated Annealing ...................... 429
   8.3 Comparison of Methods for a Particular Problem ......... 430
       8.3.1 Solution by Direct Inversion ..................... 432
             8.3.1.1 TSVD Solution Method ..................... 432
             8.3.1.2 Tikhonov Solution Method ................. 432
             8.3.1.3 CGR Solution ............................. 432
       8.3.2 Optimization Techniques .......................... 433
       8.3.3 Metaheuristic Results ............................ 433
             8.3.3.1 Simulated Annealing ...................... 433
       8.3.4 Comparison of Selected Results ................... 434
   8.4 Application of Metaheuristic Methods ................... 435
   8.5 Unresolved Problems .................................... 435
   8.6 Inverse Problems Involving Participating Media ......... 436
   8.7 Concluding Remarks ..................................... 436
   Homework ................................................... 437
Chapter 9 Absorption and Emission in Participating
          Media ............................................... 441
   9.1 Introduction ........................................... 441
   9.2 Spectral Lines and Bands for Absorption and Emission
       of Gases ............................................... 444
       9.2.1 Physical Mechanisms .............................. 444
       9.2.2 Condition of Local Thermodynamic
             Equilibrium (LTE) ................................ 447
       9.2.3 Spectral Line Broadening ......................... 448
             9.2.3.1 Natural Broadening ....................... 449
             9.2.3.2 Doppler Broadening ....................... 450
             9.2.3.3 Collision Broadening and Narrowing ....... 450
             9.2.3.4 Stark Broadening ......................... 451
       9.2.4 Absorption or Emission by a Single Spectral
             Line ............................................. 452
             9.2.4.1 Property Definitions for a Path in a
                     Uniform Absorbing and Emitting Medium .... 452
             9.2.4.2 Weak Lines ............................... 453
             9.2.4.3 Relations for Lorentz Lines .............. 454
       9.2.5 Band Absorption .................................. 455
             9.2.5.1 Band Structure ........................... 455
             9.2.5.2 Types of Band Models ..................... 455
             9.2.5.3 Spectral Line-by-Line Databases .......... 458
   9.3 Band Models and Correlations for Gas Absorption
       and Emission ........................................... 458
       9.3.1 Narrow-Band Models ............................... 458
             9.3.1.1 Elsasser Model ........................... 458
             9.3.1.2 Goody Model .............................. 460
             9.3.1.3 Malkmus Model ............................ 460
       9.3.2 Wide-Band Models and Correlations ................ 460
       9.3.3 Contemporary Band Correlations ................... 467
             9.3.3.1 k-Distribution Method .................... 467
             9.3.3.2 Correlated-k Method ...................... 468
             9.3.3.3 Weighted Sum of Gray Gases ............... 473
   9.4 Total Gas-Total Emittance Correlations ................. 479
   9.5 Mean Absorption Coefficients ........................... 484
       9.5.1 Planck Mean Absorption Coefficient ............... 484
       9.5.2 Rosseland Mean Absorption Coefficient ............ 484
       9.5.3 Patch Mean Absorption Coefficient ................ 484
   9.6 True Absorption Coefficient ............................ 485
   9.7 Radiative Properties of Translucent Liquids 
       and Solids ............................................. 485
   Homework ................................................... 491
Chapter 10 Radiative Transfer Relations in Simple
           Systems ............................................ 493
   10.1 Introduction .......................................... 493
   10.2 Energy Equation and Boundary Conditions for a
        Translucent Medium with Radiation ..................... 494
   10.3 Radiative Transfer and Source Function Equations ...... 495
        10.3.1 Radiative Transfer Equation .................... 495
        10.3.2 Source Function Equation ....................... 497
   10.4 Radiative Flux and Its Divergence within a Medium ..... 500
        10.4.1 Radiative Flux Vector .......................... 501
        10.4.2 Divergence of Radiative Flux without 
               Scattering (Absorption Alone) .................. 504
        10.4.3 Divergence of Radiative Flux Including
               Scattering ..................................... 505
   10.5 Summary of Relations for Radiative Transfer in
        Absorbing, Emitting, and Scattering Media ............. 507
        10.5.1 Energy Equation ................................ 507
        10.5.2 Radiative Energy Source ........................ 507
        10.5.3 Source Function ................................ 507
        10.5.4 Radiative Transfer Equation .................... 508
        10.5.5 Relations for a Gray Medium .................... 508
   10.6 Net-Radiation Method for Enclosures Filled with an
        Isothermal Medium of Uniform Composition .............. 509
        10.6.1 Definitions of Spectral Geometric-Mean 
              Transmission and Absorption Factors ............. 511
              10.6.1.1 Definitions of Spectral Geometric-Mean
                       Transmission and Absorption Factors .... 511
        10.6.2 Matrix of Enclosure-Theory Equations ........... 512
        10.6.3 Energy Balance in a Medium ..................... 513
        10.6.4 Spectral Band Equations for an Enclosure ....... 515
        10.6.5 Gray Medium in a Gray Enclosure ................ 516
   10.7 Evaluation of Spectral Geometric-Mean Transmittance
        and Absorptance Factors ............................... 518
   10.8 Mean Beam-Length Approximation for Spectral Radiation
        from an Entire Volume of a Medium to All or Part of
        Its Boundary .......................................... 518
        10.8.1 Mean Beam Length for a Medium between Parallel
               Plates Radiating to Area on Plate .............. 519
        10.8.2 Mean Beam Length for Sphere of Medium Radiating
               to Any Area on Its Boundary .................... 520
        10.8.3 Radiation from Entire Medium Volume to Its
               Entire Boundary for Optically Thin Medium ...... 520
        10.8.4 Correction to Mean Beam Length When Medium
               Is Not Optically Thin .......................... 521
   10.9 Exchange of Total Radiation in an Enclosure 
        by Use of Mean Beam Length ............................ 526
        10.9.1 Total Radiation from Entire Medium Volume 
               to All or Part of its Boundary ................. 527
        10.9.2 Exchange between Entire Medium Volume and
               Emitting Boundary .............................. 527
   Homework ................................................... 529
Chapter 11 Energy Transfer in Plane Layers and
           Multidimensional Geometries: Participating Media 
           with and without Conduction ........................ 535
   11.1 Introduction .......................................... 535
   11.2 Equations for Radiative Intensity, Flux, Flux 
        Divergence,and Source Function in a Plane Layer ....... 535
        11.2.1 Radiative Transfer Equation and Radiative 
               Intensity for a Plane Layer .................... 535
        11.2.2 Local Radiative Flux in a Plane Layer .......... 537
        11.2.3 Divergence of the Radiative Flux—Radiative
               Energy Source .................................. 538
        11.2.4 Equation for the Source Function in  
               a Plane Layer .................................. 539
        11.2.5 Relations for Isotropic Scattering ............. 539
        11.2.6 Diffuse Boundary Fluxes for a Plane Layer
               with Isotropic Scattering ...................... 541
   11.3 Gray Plane Layer of Absorbing and Emitting Medium
        with Isotropic Scattering ............................. 541
   11.4 Gray Plane Layer in Radiative Equilibrium ............. 545
        11.4.1 Energy Equation ................................ 545
        11.4.2 Absorbing Gray Medium in Radiative Equilibrium
               with Isotropic Scattering ...................... 546
        11.4.3 Isotropically Scattering Medium with Zero 
               Absorption ..................................... 546
        11.4.4 Gray Medium with dqr/dx = 0 between Opaque
               Diffuse-Gray Boundaries ........................ 547
        11.4.5 Solution for Gray Medium with dqr/dx = 0 between
               Black or Diffuse-Gray Walls at Specified 
               Temperatures ................................... 548
               11.4.5.1 Gray Medium between Black Walls ....... 548
               11.4.5.2 Gray Medium between Diffuse-Gray
                        Walls ................................. 551
   11.5 Radiation Combined with Conduction .................... 552
        11.5.1 Energy Balance ................................. 554
        11.5.2 Plane Layer with Conduction and Radiation ...... 554
               11.5.2.1 Absorbing-Emitting Medium without
                        Scattering ............................ 554
               11.5.2.2 Absorbing-Emitting Medium with
                        Scattering ............................ 556
   11.6 Multidimensional Radiation in a Participating Gray
        Medium with Isotropic Scattering ...................... 559
        11.6.1 Radiation Relations in Three Dimensions ........ 559
        11.6.2 Two-Dimensional Transfer in a 
               Rectangular Region ............................. 561
        11.6.3 Rectangular Region with Conduction and
               Radiation ...................................... 564
        11.6.4 One-Dimensional Transfer in a Cylindrical
               Region ......................................... 566
        11.6.5 Additional Information on Nonplanar and
               Multidimensional Geometries .................... 568
   11.7 Transient Solutions Including Conduction .............. 569
   11.8 Discussion of Solution Procedures ..................... 572
        11.8.1 Simultaneous Solution of Energy and Radiative
               Transfer Relations ............................. 572
        11.8.2 Outline of Solution Methods for the Radiative
               Transfer Equation .............................. 573
               11.8.2.1 Solution Methods for the Differential 
                        RTE ................................... 573
               11.8.2.2 Solution Methods for the Integral
                        RTE ................................... 574
   Homework ................................................... 575
Chapter 12 Optically Thin and Thick Limits 
           for Radiative Transfer in Participating Media....... 581
   12.1 Introduction .......................................... 581
   12.2 Optically Thin and Cold Media ......................... 581
        12.2.1 Nearly Transparent Optically Thin Medium ....... 582
        12.2.2 Optically Thin Media with Cold Boundaries or
               Small Incident Radiation; the Emission 
               Approximation .................................. 585
        12.2.3 Cold Medium with Weak Scattering ............... 587
   12.3 Optically Thick Medium : Radiative Diffusion .......... 587
        12.3.1 Simplified Derivation of the Radiative
               Diffusion Approximation ........................ 588
        12.3.2 General Radiation-Diffusion Relations 
               in a Medium .................................... 591
               12.3.2.1 Rosseland Diffusion Equation for
                        Local Radiative Flux .................. 591
               12.3.2.2 Emissive Power Jump Boundary Condition
                        in the Limit without Heat Conduction .. 592
               12.3.2.3 Gray Stagnant Medium between Parallel
                        Gray Walls ............................ 593
               12.3.2.4 Other Radiative Diffusion Solutions 
                        for Gray Media without Heat 
                        Conduction ............................ 595
   12.4 Approximations for Combined Radiation and Conduction .. 599
        12.4.1 Addition of Energy Transfer by Radiation 
               and Conduction ................................. 599
        12.4.2 Diffusion Method for Combined Radiation and
               Conduction ..................................... 600
   12.5 Approximate Solutions for Combined Radiation, 
        Conduction, and Convection in a Boundary Layer ........ 606
        12.5.1 Optically Thin Thermal Layer ................... 606
        12.5.2 Optically Thick Thermal Layer .................. 607
   12.6 Use of Mean Absorption Coefficients ................... 609
        12.6.1 Definitions of Mean Absorption Coefficients .... 609
        12.6.2 Approximate Solutions of the Radiative Transfer
               Equations Using Mean Absorption Coefficients ... 610
   12.7 Curtis-Godson Approximation ........................... 611
   Homework ................................................... 614
Chapter 13 Solution of Radiative Transfer in 
           Participating Media ................................ 619
   13.1 Introduction .......................................... 619
   13.2 Differential Methods .................................. 619
        13.2.1 Milne-Eddington (Differential) Approximation ... 619
        13.2.2 General Spherical Harmonics (PN) Method ........ 623
        13.2.3 Boundary Conditions for the PN Method .......... 628
        13.2.4 PN Method for Radiation Combined with 
               Heat Conduction ................................ 633
        13.2.5 Simplified PN (SPN) Method .............. ...... 636
               13.2.5.1 SP1 Solution .......................... 637
               13.2.5.2 SP1 Boundary Conditions ............... 638
               13.2.5.3 Higher-Order Solutions ................ 638
               13.5.2.1 SP3 Solution .......................... 639
               13.2.6 Boundary Conditions for Higher-Order 
                      SPN Solutions ........................... 640
   13.3 Discrete Ordinates (SN) Method ........................ 640
        13.3.1 Two-Flux Method: The Schuster-Schwarzschild 
               Approximation .................................. 640
        13.3.2 Radiative Transfer Equation with Discrete 
               Ordinates Method ............................... 644
        13.3.3 Boundary Conditions for the Discrete 
               Ordinates Method ............................... 644
        13.3.4 Control Volume Method for Discrete Ordinates
               Numerical Solution ............................. 645
               13.3.4.1 Relations for Two-Dimensional
                        Rectangular Coordinates ............... 646
               13.3.4.2 Relations for Three-Dimensional
                        Rectangular Coordinates ............... 648
        13.3.5 Results Using Discrete Ordinates ............... 652
   13.4 Other Methods That Depend on Angular Discretization ... 655
        13.4.1 Discrete Transfer Method ....................... 655
        13.4.2 Finite Volume Method ........................... 656
        13.4.3 Boundary Element Method ........................ 657
   13.5 Numerical Solution Methods for Combined Radiation,
        Conduction, and Convection in Participating Media ..... 657
   13.6 Finite-Difference Methods ............................. 658
        13.6.1 Energy Equation for Combined Radiation 
               and Conduction ................................. 658
        13.6.2 Radiation and Conduction in a Plane Layer ...... 660
        13.6.3 Radiation and Conduction in a Two-Dimensional 
               Rectangular Region ............................. 662
   13.7 Finite-Element Method (FEM) ........................... 666
        13.7.1 FEM for Radiative Equilibrium 
               (No Conduction and/or Convection) .............. 666
        13.7.2 Radiation with Conduction and/or Convection .... 668
        13.7.3 Results from Finite-Element Analyses ........... 669
   13.8 Zonal Method .......................................... 672
        13.8.1 Exchange Area Relations ........................ 672
        13.8.2 Zonal Formulation for Radiative Equilibrium .... 674
        13.8.3 Developments for the Zonal Method .............. 676
               13.8.3.1 Smoothing of Exchange Area Sets ....... 676
               13.8.3.2 Other Formulations of the Zonal 
                        Method ................................ 677
        13.8.4 Numerical Results from Zone Method ............. 677
   13.9 Monte Carlo Technique for Radiatively Participating
        Media ................................................. 680
        13.9.1 Discussion of the Computational Method ......... 681
        13.9.2 Monte Carlo Results for Radiation through
               Gray Gases ..................................... 685
               13.9.2.1 Infinite Parallel Walls ............... 685
               13.9.2.2 Cylindrical Geometry .................. 686
        13.9.3 Consideration of Radiative Property 
               Variations ..................................... 686
        13.9.4 Parallel Processing and Other Computational
               Improvements ................................... 687
               13.9.4.1 Monte Carlo in Combined-Mode 
                        Problems .............................. 689
        13.9.5 Reverse Monte Carlo in Participating Media ..... 689
   13.10 Numerical Boundary Conditions and Additional 
         Solution Methods ..................................... 691
         13.10.1 Boundary Condition for Numerical Solutions ... 691
         13.10.2 Exponential Kernel Approximation ............. 692
         13.10.3 Reduction of the Integral Order .............. 694
         13.10.4 YIX Method ................................... 695
         13.10.5 Additional Information on Numerical Methods .. 696
   13.11 Results for Combined Convection, Conduction, 
         and Radiation ........................................ 697
         13.11.1 Forced Convection Channel Flows .............. 698
         13.11.2 Free Convection Flow, Heat Transfer, 
                 and Stability ................................ 703
         13.11.3 Radiative Transfer in Porous Media and
                 Packed Beds .................................. 706
         13.11.4 Additional Topics with Combined Radiation,
                 Conduction, and Convection ................... 706
   13.12 Benchmark Solutions for Computational Validation ..... 707
   13.13 Inverse Problems Involving Participating Media ....... 709
   13.14 Solution Using Commercially Available and 
         Other Codes .......................................... 709
   13.15 Verification, Validation, and Uncertainty 
         Quantification ....................................... 709
   Homework ................................................... 710
Chapter 14 Electromagnetic Wave Theory ........................ 725
   14.1 Introduction .......................................... 725
   14.2 EM-Wave Equations ..................................... 726
   14.3 Wave Propagation in a Medium .......................... 727
        14.3.1 EM-Wave Propagation in Perfect Dielectric
               Media .......................................... 727
        14.3.2 Wave Propagation in Isotropic Media with Finite
               Electrical Conductivity ........................ 731
        14.3.3 Energy of an EM Wave ........................... 732
   14.4 Laws of Reflection and Refraction ..................... 733
        14.4.1 Reflection and Refraction at the Interface 
               between Perfect Dielectrics (k → 0) ............ 733
        14.4.2 Reflection and Refraction at the Interface 
               of an Absorbing Medium (k ≠ 0) ................. 738
   14.5 Amplitude and Scattering Matrices ..................... 741
   14.6 EM-Wave Theory and the Radiative Transfer Equation .... 744
   Homework ................................................... 745
Chapter 15 Absorption and Scattering by Particles 
           and Agglomerates ................................... 747
   15.1 Introduction .......................................... 747
   15.2 Absorption and Scattering: Definitions ................ 749
        15.2.1 Background ..................................... 749
        15.2.2 Absorption and Scattering Coefficients, 
               Cross Sections, Efficiencies ................... 749
        15.2.3 Scattering Phase Function ...................... 751
   15.3 Scattering by Large Spherical Particles ............... 754
        15.3.1 Scattering by a Large Specularly Reflecting
               Sphere ......................................... 755
        15.3.2 Reflection from a Large Diffuse Sphere ......... 757
        15.3.3 Large Ideal Dielectric Sphere with n ≈ 1 ....... 759
        15.3.4 Diffraction from a Large Sphere ................ 760
        15.3.5 Geometric Optics Approximation ................. 760
   15.4 Scattering by Small Particles ......................... 764
        15.4.1 Rayleigh Scattering by Small Spheres ........... 764
        15.4.2 Scattering Cross Section for Rayleigh
               Scattering ..................................... 764
        15.4.3 Phase Function for Rayleigh Scattering ......... 766
   15.5 Lorenz-Mie Theory for Spherical Particles ............. 767
        15.5.1 Formulation for Homogeneous and Stratified
               Spherical Particles ............................ 767
        15.5.2 Cross Sections for Specific Cases .............. 771
   15.6 Prediction of Properties for Irregularly Shaped
        Particles ............................................. 773
        15.6.1 Integral and Differential Formulations ......... 773
        15.6.2 T-matrix Approach .............................. 773
        15.6.3 Discrete Dipole Approximation .................. 775
        15.6.4 Finite Element Method .......................... 777
        15.6.5 Finite Difference Time Domain Method ........... 777
   15.7 Approximate Anisotropic Scattering Phase Functions .... 778
        15.7.1 Forward-Scattering Phase Function .............. 779
               15.7.1.1 Linear-Anisotropic Phase Function ..... 779
               15.7.1.2 Delta-Eddington Phase Function ........ 779
               15.7.1.3 Henyey-Greenstein Phase Function ...... 779
   15.8 Dependent Absorption and Scattering ................... 781
   Homework ................................................... 785
Chapter 16 Near-Field Thermal Radiation ....................... 787
   16.1 Introduction .......................................... 787
   16.2 Electromagnetic Treatment of Thermal Radiation
        and Basic Concepts .................................... 789
        16.2.1 Near-Field Thermal Radiation versus Far-Field
               Thermal Radiation .............................. 789
        16.2.2 Electromagnetic Description of Thermal
               Radiation ...................................... 790
        16.2.3 Near-Field Radiative Heat Flux ................. 793
        16.2.4 Density of Electromagnetic States .............. 794
        16.2.5 Spatial and Temporal Coherence of Thermal
               Radiation ...................................... 794
   16.3 Evanescent and Surface Waves .......................... 795
        16.3.1 Evanescent Waves and Total Internal
               Reflection ..................................... 795
        16.3.2 Surface Waves .................................. 797
   16.4 Near-Field Radiative Heat Flux Calculations ........... 800
        16.4.1 Near-Field Radiative Heat Flux in One-
               Dimensional Layered Medium ..................... 801
        16.4.2 Near-Field Radiative Heat Transfer between
               Two Bulk Materials Separated by a Vacuum Gap ... 804
   16.5 Experimental Studies of Near-Field Thermal 
        Radiation ............................................. 808
        16.5.1 Historical Overview ............................ 809
        16.5.2 Experimental Determination of Near-Field 
               Radiative Transfer Coefficient ................. 810
        16.5.3 Near-Field Effects on Radiative Properties ..... 811
   16.6 Concluding Remarks .................................... 813
   Homework ................................................... 815
Chapter 17 Radiative Effects in Translucent Solids, 
           Windows, and Coatings .............................. 817
   17.1 Introduction .......................................... 817
   17.2 Transmission, Absorption, and Reflection of Windows ... 818
        17.2.1 Single Partially Transmitting Layer with
               Thickness D >> λ 
               (No Wave Interference Effects) ................. 819
               17.2.1.1 Ray-Tracing Method .................... 819
               17.2.1.2 Net-Radiation Method .................. 820
        17.2.2 Multiple Parallel Windows ...................... 822
        17.2.3 Transmission through Multiple Parallel
               Glass Plates ................................... 823
        17.2.4 Interaction of Transmitting Plates with 
               Absorbing Plate ................................ 824
   17.3 Enclosure Analysis with Partially Transparent
        Windows ............................................... 827
   17.4 Effects of Coatings or Thin Films on Surfaces ......... 829
        17.4.1 Coating without Wave Interference Effects ...... 829
               17.4.1.1 Nonabsorbing Dielectric Coating on
                        Nonabsorbing Dielectric Substrate ..... 829
               17.4.1.2 Absorbing Coating on Metal Substrate .. 831
        17.4.2 Thin Film with Wave Interference Effects ....... 831
               17.4.2.1 Nonabsorbing Dielectric Thin Film on
                        Nonabsorbing Dielectric Substrate ..... 831
               17.4.2.2 Absorbing Thin Film on a Metal
                        Substrate ............................. 835
        17.4.3 Films with Partial Coherence ................... 836
   17.5 Refractive Index Effects on Radiation in a
        Participating Medium .................................. 836
        17.5.1 Effect of Refractive Index on Intensity
               Crossing an Interface .......................... 837 
        17.5.2 Effect of Angle for Total Reflection ........... 838
        17.5.3 Interface Conditions for Radiation Analysis
               in a Plane Layer ............................... 839
               17.5.3.1 Layer with Nondiffuse or Specular
                        Surfaces .............................. 839 
               17.5.3.2 Diffuse Surfaces ...................... 842 
        17.5.5 Emission from a Translucent Layer (n > 1)
               at Uniform Temperature with Specular or Diffuse
               Boundaries ..................................... 843 
   17.6 Multiple Participating Layers with Heat Conduction .... 845 
        17.6.1 Formulation for Multiple Participating
               Plane Layers ................................... 846 
        17.6.2 Translucent Layer on a Metal Wall .............. 848 
        17.6.3 Composite of Two Translucent Layers ............ 850 
               17.6.3.1 Temperature Distribution Relations
                        from Energy Equation .................. 850 
               17.6.3.2 Relations for Radiative Flux .......... 853 
               17.6.3.3 Equation for the Source Function ...... 854 
               17.6.3.4 Solution Procedure and Typical 
                        Results ............................... 854
   17.7 Light Pipes and Fiber Optics .......................... 857
   Homework ................................................... 859
Appendix A: Conversion Factors, Radiation Constants, and
Blackbody Functions ........................................... 867
Appendix B: Radiative Properties .............................. 873
Appendix C: Catalog of Selected Configuration Factors ......... 881
Appendix D: Exponential Integral Relations and Two-Dimensional
Radiation Functions ........................................... 889
Appendix E: List of References ................................ 895
Index ......................................................... 951


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:12 2019. Размер: 55,715 bytes.
Посещение N 1856 c 06.11.2012