Searching References in the Thermoptim Unit .................. xxiv
Foreword by John W. Mitchell .................................. xxv
Foreword by Alain Lambotte .................................. xxvii
About the Author ............................................. xxix
General introduction ......................................... xxxi
Structure of the book ..................................... xxxi
Objectives of this book ................................. xxxiii
A working tool on many levels ............................ xxxiv
Mind Maps .................................................... xxxv
List of Symbols ............................................... xli
Conversion Factors ........................................... xlix
1 First Steps in Engineering Thermodynamics ................... 1
1 A New Educational Paradigm ................................... 3
1.1 Introduction ............................................ 3
1.2 General remarks on the evolution of training
specifications .......................................... 4
1.3 Specifics of applied thermodynamics teaching ............ 4
1.4 A new educational paradigm .............................. 5
1.5 Diapason modules ........................................ 7
1.6 A three-step progressive approach ....................... 9
1.7 Main pedagogic innovations brought by Thermoptim ....... 10
1.8 Digital resources of the Thermoptim-UNIT portal ........ 10
1.9 Comparison with other tools with teaching potential .... 11
1.10 Conclusion ............................................. 12
References .................................................. 12
2 First Steps in Thermodynamics: Absolute Beginners ........... 13
2.1 Architecture of the machines studied ................... 13
2.1.1 Steam power plant ............................... 13
2.1.2 Gasturbine ...................................... 14
2.1.3 Refrigeration machine ........................... 15
2.2 Four basic functions ................................... 16
2.3 Notions of thermodynamic system and state .............. 17
2.4 Energy exchange between a thermodynamic system and
its surroundings ....................................... 17
2.5 Conservation of energy: first law of thermodynamics .... 17
2.6 Application to the four basic functions previously
identified ............................................. 18
2.6.1 Compression and expansion with work ............. 18
2.6.2 Expansion without work: valves, filters ......... 19
2.6.3 Heat exchange ................................... 19
2.6.4 Combustion chambers, boilers .................... 19
2.7 Reference processes .................................... 19
2.7.1 Compression and expansion with work ............. 19
2.7.2 Expansion without work: valves, filters ......... 20
2.7.3 Heat exchange ................................... 20
2.7.4 Combustion chambers, boilers .................... 20
2.8 Summary reminders on pure substance properties ......... 20
2.9 Return to the concept of state and choice of state
variables to consider .................................. 21
2.10 Thermodynamic charts ................................... 21
2.10.1 Different types of charts ....................... 22
2.10.2 (h, ln(P)) chart ................................ 22
2.11 Plot of cycles in the (h, ln(P)) chart ................. 23
2.11.1 Steam power plant ............................... 24
2.11.2 Refrigeration machine ........................... 26
2.12 Modeling cycles with Thermoptim ........................ 29
2.12.1 Steam power plant ............................... 30
2.12.2 Gasturbine ...................................... 31
2.12.3 Refrigeration machine ........................... 31
2.13 Conclusion ............................................. 32
3 First Steps in Thermodynamics: Entropy and the Second Law ... 35
3.1 Heat in thermodynamic systems .......................... 35
3.2 Introduction of entropy ................................ 36
3.3 Second law of thermodynamics ........................... 37
3.3.1 Limits of the first law of thermodynamics ....... 37
3.3.2 Concept of irreversibility ...................... 37
3.3.3 Heat transfer inside an isolated system,
conversion of heat into work .................... 37
3.3.4 Statement of the second law ..................... 38
3.4 (T, s) Entropy chart ................................... 38
3.5 Carnot effectiveness of heat engines ................... 40
3.6 Irreversibilities in industrial processes .............. 41
3.6.1 Heat exchangers ................................. 41
3.6.2 Compressors and turbines ........................ 41
3.7 Plot of cycles in the entropy chart, qualitative
comparison with the carnot cycle ....................... 41
3.7.1 Steam power plant ............................... 41
3.7.2 Gas turbine ..................................... 43
3.7.3 Refrigeration machine ........................... 44
3.8 Conclusion ............................................. 45
2 Methodology, Thermodynamics Fundamentals, Thermoptim,
Components .................................................. 47
4 Introduction ................................................ 49
4.1 A two-level methodology ................................ 49
4.1.1 Physical phenomena taking place in a gas
turbine ......................................... 49
4.1.2 Energy technologies: component assemblies ....... 50
4.1.3 Generalities about numerical models ............. 51
4.2 Practical implementation of the double analytical-
systems approach ....................................... 52
4.3 Methodology ............................................ 54
4.3.1 Systems modeling: the General System ............ 54
4.3.2 Systems-analysis of energy technologies ......... 55
4.3.3 Component modeling .............................. 56
4.3.4 Thermoptim primitive types ...................... 57
4.3.5 Thermoptim assets ............................... 62
References .................................................. 62
5 Thermodynamics Fundamentals ................................. 63
5.1 Basic concepts, definitions ............................ 63
5.1.1 Open and closed systems ......................... 64
5.1.2 State of a system, intensive and extensive
quantities ...................................... 65
5.1.3 Phase, pure substances, mixtures ................ 66
5.1.4 Equilibrium, reversible process ................. 66
5.1.5 Temperature ..................................... 66
5.1.6 Symbols ......................................... 67
5.2 Energy exchanges in a process .......................... 67
5.2.1 Work δW of external forces on a closed system ... 67
5.2.2 Heat transfer ................................... 68
5.3 First law of thermodynamics ............................ 69
5.3.1 Definition of internal energy U (closed
system) ......................................... 70
5.3.2 Application to a fluid mass ..................... 70
5.3.3 Work provided, shaft work τ ..................... 71
5.3.4 Shaft work and enthalpy (open systems) .......... 73
5.3.5 Establishment of enthalpy balance ............... 74
5.3.6 Application to industrial processes ............. 75
5.4 Second law of thermodynamics ........................... 76
5.4.1 Definition of entropy ........................... 77
5.4.2 Irreversibility ................................. 78
5.4.3 Carnot effectiveness of heat engines ............ 79
5.4.4 Fundamental relations for a phase ............... 81
5.4.5 Thermodynamic potentials ........................ 82
5.5 Exergy ................................................. 83
5.5.1 Presentation of exergy for a monotherm open
system in steady state .......................... 84
5.5.2 Multithermal open steady-state system ........... 85
5.5.3 Application to a two-source reversible
machine ......................................... 86
5.5.4 Special case: heat exchange without work
production ...................................... 86
5.5.5 Exergy efficiency ............................... 86
5.6 Representation of substance properties ................. 87
5.6.1 Solid, liquid, gaseous phases ................... 87
5.6.2 Perfect and ideal gases ......................... 88
5.6.3 Ideal gas mixtures .............................. 93
5.6.4 Liquids and solids .............................. 95
5.6.5 Liquid-vapor equilibrium of a pure substance .... 96
5.6.6 Representations of real fluids .................. 97
5.6.7 Moist mixtures ................................. 117
5.6.8 Real fluid mixtures ............................ 124
References ................................................. 136
Further reading ............................................ 136
6 Presentation of Thermoptim ................................. 137
6.1 General ............................................... 137
6.1.1 Initiation applets ............................. 138
6.1.2 Interactive charts ............................. 139
6.1.3 Thermoptim's five working environments ......... 139
6.2 Diagram editor ........................................ 142
6.2.1 Presentation of the editor .................... 142
6.2.2 Graphical component properties ................. 142
6.2.3 Links between the simulator and the diagrams ... 144
6.3 Simulation environment ................................ 146
6.3.1 Main project screen ............................ 146
6.3.2 Main menus ..................................... 148
6.3.3 Export of the results in the form of text
file ........................................... 149
6.3.4 Point screen ................................... 149
6.3.5 Point moist properties calculations ............ 153
6.3.6 Node screen .................................... 155
6.4 Extension of Thermoptim by external classes ........... 157
6.4.1 Extension system for Thermoptim by adding
external classes ............................... 157
6.4.2 Software implementation ........................ 158
6.4.3 Viewing available external classes ............. 159
6.4.4 Representation of an external component in
the diagram editor ............................. 160
6.4.5 Loading an external class ...................... 160
6.4.6 Practical realization of an external class ..... 160
6.5 Different versions of Thermoptim ...................... 161
7 Basic Components and Processes ............................. 163
7.1 Compressions .......................................... 163
7.1.1 Thermodynamics of compression .................. 164
7.1.2 Reference compression .......................... 164
7.1.3 Actual compressions ............................ 166
7.1.4 Staged compression ............................. 174
7.1.5 Calculation of a compression И in Thermoptim ... 175
7.2 Displacement compressors .............................. 177
7.2.1 Piston compressors ............................. 177
7.2.2 Screw compressors .............................. 182
7.2.3 Criteria for the choice between displacement
compressors .................................... 185
7.3 Dynamic compressors ................................... 185
7.3.1 General ........................................ 185
7.3.2 Thermodynamics of permanent flow ............... 186
7.3.3 Similarity and performance of turbomachines .... 192
7.3.4 Practical calculation of dynamic compressors ... 197
7.3.5 Pumps and fans ................................. 199
7.4 Comparison of the various types of compressors ........ 199
7.4.1 Comparison of dynamic and displacement
compressors .................................... 199
7.4.2 Comparison between dynamic compressors ......... 200
7.5 Expansion ............................................. 201
7.5.1 Thermodynamics of expansion .................... 201
7.5.2 Calculation of an expansion in Thermoptim ...... 203
7.5.3 Turbines ....................................... 203
7.5.4 Turbine performance maps ....................... 204
7.5.5 Degree of reaction of a stage .................. 205
7.6 Combustion ............................................ 206
7.6.1 Combustion phenomena, basic mechanisms ......... 206
7.6.2 Study of complete combustion ................... 213
7.6.3 Study of incomplete combustion ................. 216
7.6.4 Energy properties of combustion reactions ...... 225
7.6.5 Emissions of gaseous pollutants ................ 234
7.6.6 Calculation of combustion mm in Thermoptim ..... 235
7.6.7 Technological aspects .......................... 239
7.7 Throttling or flash ................................... 241
7.8 Water vapor/gas mixtures processes .................... 242
7.8.1 Moist process screens .......................... 242
7.8.2 Moist mixers ................................... 243
7.8.3 Heating a moist mixture ........................ 245
7.8.4 Cooling of moist mix ........................... 245
7.8.5 Humidification of a gas ........................ 248
7.8.6 Dehumidification of a mix by desiccation ....... 251
7.8.7 Determination of supply conditions ............. 253
7.8.8 Air conditioning processes in a psychrometric
chart .......................................... 255
7.9 Examples of components represented by external
classes ............................................... 256
7.9.1 Nozzles ........................................ 256
7.9.2 Diffusers ...................................... 260
7.9.3 Ejectors ....................................... 264
References ................................................. 268
Further reading ............................................ 269
8 Heat Exchangers ............................................ 271
8.1 Principles of operation of a heat exchanger ........... 271
8.1.1 Heat flux exchanged ............................ 273
8.1.2 Heat exchange coefficient U .................... 274
8.1.3 Fin effectiveness .............................. 275
8.1.4 Values of convection coefficients h ............ 275
8.2 Phenomenological models for the calculation of heat
exchangers ............................................ 276
8.2.1 Number of transfer units method ................ 276
8.2.2 Relationship between NTU and e ................. 278
8.2.3 Matrix formulation ............................. 282
8.2.4 Heat exchanger assemblies ...................... 283
8.2.5 Relationship with the LMTD method .............. 287
8.2.6 Heat exchanger pinch ........................... 287
8.3 Calculation of heat exchangers in Thermoptim .......... 288
8.3.1 "Exchange" processes ........................... 288
8.3.2 Creation of a heat exchanger in the diagram
editor ......................................... 289
8.3.3 Heat exchanger screen .......................... 290
8.3.4 Simple heat exchanger design ................... 290
8.3.5 Generic liquid ................................. 292
8.3.6 Off-design calculation of heat exchangers ...... 292
8.3.7 Thermocouplers ................................. 294
8.4 Technological aspects ................................. 296
8.4.1 Tube exchangers ................................ 296
8.4.2 Plate heat exchangers .......................... 297
8.4.3 Other types of heat exchangers ................. 298
8.5 Summary ............................................... 299
References ................................................. 299
Further reading ............................................ 299
9 Examples of Applications ................................... 301
9.1 Steam power plant cycle ............................... 301
9.1.1 Principle of the machine and problem data ...... 301
9.1.2 Creation of the diagram ........................ 302
9.1.3 Creation of simulator elements ................. 306
9.1.4 Setting points ................................. 307
9.1.5 Setting of processes ........................... 308
9.1.6 Plotting the cycle on thermodynamic chart ...... 309
9.1.7 Design of condenser ............................ 311
9.1.8 Cycle improvements ............................. 315
9.1.9 Modification of the model ...................... 316
9.2 Single stage compression refrigeration cycle .......... 318
9.2.1 Principle of the machine and problem data ...... 318
9.2.2 Creation of the diagram ........................ 319
9.2.3 Creation of simulator elements ................. 323
9.2.4 Setting points ................................. 324
9.2.5 Setting of processes ........................... 325
9.3 Gas turbine cycle ..................................... 327
9.3.1 Principle of the machine and problem data ...... 327
9.3.2 Creation of the diagram ........................ 327
9.3.3 Creation of simulator elements ................. 330
9.3.4 Setting points ................................. 331
9.3.5 Setting of processes ........................... 331
9.4 Air conditioning installation ......................... 335
9.4.1 Principle of installation and problem data ..... 335
9.4.2 Supply conditions .............................. 336
9.4.3 Properties of the mix (outdoor air/recycled
air) ........................................... 337
9.4.4 Air treatment .................................. 338
9.4.5 Plot on the psychrometric chart ................ 339
10 General Issues on Cycles, Energy and Exergy Balances ....... 341
10.1 General issues on cycles, notations ................... 341
10.1.1 Motorcycles .................................... 342
10.1.2 Refrigeration cycles ........................... 342
10.1.3 Carnot cycle ................................... 343
10.1.4 Regeneration cycles ............................ 343
10.1.5 Theoretical and real cycles .................... 344
10.1.6 Notions of efficiency and effectiveness ........ 344
10.2 Energy and exergy balance ............................. 345
10.2.1 Energy balances ................................ 345
10.2.2 Exergy balances ................................ 346
10.2.3 Practical implementation in a spreadsheet ...... 347
10.2.4 Exergy balances of complex cycles .............. 350
10.3 Productive structures ................................. 350
10.3.1 Establishment of a productive structure ........ 350
10.3.2 Relationship between the diagram and the
productive structure ........................... 351
10.3.3 Implementation in Thermoptim ................... 353
10.3.4 Automation of the creation of the productive
structure ...................................... 355
10.3.5 Examples ....................................... 357
10.3.6 Conclusion ..................................... 365
References ................................................. 365
3 Main Conventional Cycles ................................... 367
11 Introduction: Changing Technologies ........................ 369
11.1 Limitation of fossil resources and geopolitical
constraints ........................................... 370
11.2 Local and global environmental impact of energy ....... 373
11.2.1 Increase in global greenhouse effect ........... 373
11.2.2 Reduction of the ozone layer ................... 375
11.2.3 Urban pollution and acid rain .................. 376
11.3 Technology transfer from other sectors ................ 379
11.4 Technological innovation key to energy future ......... 380
References ................................................. 381
Further reading ............................................ 381
12 Internal Combustion Turbomotors ............................ 383
12.1 Gasturbines ........................................... 383
12.1.1 Operating principles ........................... 383
12.1.2 Examples of gas turbines ....................... 385
12.1.3 Major technological constraints ................ 386
12.1.4 Basic cycles ................................... 390
12.1.5 Cycle improvements ............................. 398
12.1.6 Mechanical configurations ...................... 405
12.1.7 Emissions of pollutants ........................ 411
12.1.8 Outlook for gas turbines ....................... 411
12.2 Aircraft engines ...................................... 413
12.2.1 Turbojet and turboprop engines ................. 413
12.2.2 Reaction engines without rotating machine ...... 431
References ................................................. 436
Further reading ............................................ 437
13 Reciprocating Internal Combustion Engines .................. 439
13.1 General operation mode ................................ 440
13.1.1 Four-and two-stroke cycles ..................... 443
13.1.2 Methods of cooling ............................. 445
13.2 Analysis of theoretical cycles of reciprocating
engines ............................................... 446
13.2.1 Beau de Rochas ideal cycle ..................... 446
13.2.2 Diesel cycle ................................... 448
13.2.3 Mixed cycle .................................... 449
13.2.4 Theoretical associated cycles .................. 451
13.3 Characteristic curves of piston engines ............... 452
13.3.1 Effective performance, МЕР and power factor .... 453
13.3.2 Influence of the rotation speed ................ 453
13.3.3 Indicated performance, IMEP .................... 455
13.3.4 Effective performance, МЕР ..................... 457
13.3.5 Specific consumption of an engine .............. 458
13.4 Gasoline engine ....................................... 461
13.4.1 Limits of knocking and octane number ........... 461
13.4.2 Strengthening of turbulence .................... 462
13.4.3 Formation of fuel mix, fuel injection
electronic systems ............................. 463
13.4.4 Real cycles of gasoline engines ................ 465
13.5 Diesel engines ........................................ 470
13.5.1 Compression ignition conditions ............... 470
13.5.2 Ignition and combustion delays ................. 470
13.5.3 Air utilization factor ......................... 472
13.5.4 Thermal and mechanical fatigue ................. 473
13.5.5 Cooling of walls ............................... 474
13.5.6 Fuels burnt in diesel engines .................. 474
13.5.7 Real cycles of diesel engines .................. 474
13.6 Design of reciprocating engines ....................... 476
13.7 Supercharging ......................................... 478
13.7.1 General ........................................ 478
13.7.2 Basic principles ............................... 478
13.7.3 Conditions of autonomy of a turbocharger ....... 480
13.7.4 Adaptation of the turbocharger ................. 480
13.7.5 Conclusions on supercharging ................... 482
13.8 Engine and pollutant emission control ................. 482
13.8.1 Emissions of pollutants: Mechanisms involved ... 482
13.8.2 Combustion optimization ........................ 483
13.8.3 Catalytic purification converters .............. 486
13.8.4 Case of diesel engines ......................... 489
13.9 Technological prospects ............................... 491
13.9.1 Traction engines ............................... 491
13.9.2 Large gas and diesel engines ................... 495
References ................................................. 496
Further reading ............................................ 496
14 Stirling Engines ........................................... 499
14.1 Principle of operation ................................ 500
14.2 Piston drive .......................................... 502
14.3 Thermodynamic analysis of Stirling engines ............ 503
14.3.1 Theoretical cycle .............................. 503
14.3.2 Ideal Stirling cycle ........................... 504
14.3.3 Paraisothermal Stirling cycle .................. 506
14.4 Influence of the pressure ............................. 508
14.5 Choice of the working fluid ........................... 508
14.6 Heat exchangers ....................................... 509
14.6.1 Cooler ......................................... 509
14.6.2 Regenerator .................................... 509
14.6.3 Boiler ......................................... 509
14.7 Characteristics of a Stirling engine .................. 510
14.8 Simplified Stirling engine Thermoptim model ........... 512
References ................................................. 513
Further reading ............................................ 513
15 Steam Facilities (General) ................................. 515
15.1 Introduction .......................................... 515
15.2 Steam enthalpy and exergy ............................. 515
15.3 General configuration of steam facilities ............. 517
15.4 Water deaeration ...................................... 518
15.4.1 Chemical deaeration ............................ 518
15.4.2 Thermal deaeration ............................. 519
15.5 Blowdown .............................................. 519
15.6 Boiler and steam generators ........................... 520
15.6.1 Boilers ........................................ 520
15.6.2 Steam generators ............................... 522
15.6.3 Boiler operation ............................... 523
15.6.4 Optimization of pressure level ................. 524
15.7 Steam turbines ........................................ 525
15.7.1 Different types of steam turbines .............. 525
15.7.2 Behavior in off-design mode .................... 527
15.7.3 Degradation of expansion efficiency function
of steam quality ............................... 528
15.7.4 Temperature control by desuperheating .......... 529
15.8 Condensers, cooling towers ............................ 529
15.8.1 Principle of operation of cooling towers ....... 530
15.8.2 Phenomenological model ......................... 530
15.8.3 Behaviour models ............................... 533
15.8.4 Modeling a direct contact cooling tower in
Thermoptim ..................................... 539
References ................................................. 539
Further reading ............................................ 540
16 Classical Steam Power Cycles ............................... 541
16.1 Conventional flame power cycles ....................... 541
16.1.1 Basic Hirn or Rankine cycle with
superheating ................................... 541
16.1.2 Energy and exergy balance ...................... 545
16.1.3 Thermodynamic limits of simple Hirn cycle ...... 546
16.1.4 Cycle with reheat .............................. 547
16.1.5 Cycle with extraction .......................... 548
16.1.6 Supercritical cycles ........................... 550
16.1.7 Binary cycles .................................. 551
16.2 Technology of flame plants ............................ 553
16.2.1 General technological constraints .............. 554
16.2.2 Main coal power plants ......................... 555
16.2.3 Emissions of pollutants ........................ 557
16.3 Nuclear power plant cycles ............................ 557
16.3.1 Primary circuit ................................ 558
16.3.2 Steam generator ................................ 559
16.3.3 Secondary circuit .............................. 561
16.3.4 Industrial PWR evolution ....................... 564
Reference .................................................. 564
Further reading ............................................ 564
17 Combined Cycle Power Plants ................................ 567
17.1 Combined cycle without afterburner .................... 568
17.1.1 Overall performance ............................ 568
17.1.2 Reduced efficiency and power ................... 569
17.2 Combined cycle with afterburner ....................... 570
17.3 Combined cycle optimization ........................... 570
17.4 Gas turbine and combined cycles variations ............ 575
17.5 Diesel combined cycle ................................. 575
17.6 Conclusions and outlook ............................... 575
References ................................................. 576
Further reading ............................................ 576
18 Cogeneration and Trigeneration ............................. 577
18.1 Performance indicators ................................ 578
18.2 Boilers and steam turbines ............................ 579
18.3 Internal combustion engines ........................... 580
18.3.1 Reciprocating engines .......................... 580
18.3.2 Gasturbines .................................... 581
18.4 Criteria for selection ................................ 583
18.5 Examples of industrial plants ......................... 583
18.5.1 Micro-gas turbine cogeneration ................. 583
18.5.2 Industrial gas turbine cogeneration ............ 584
18.6 Trigeneration ......................................... 589
18.6.1 Production of central heating and cooling for
a supermarket .................................. 589
18.6.2 Trigeneration by micro turbine and absorption
cycle .......................................... 589
References ................................................. 595
Further reading ............................................ 595
19 Compression Refrigeration Cycles, Heat Pumps ............... 597
19.1 Principles of operation ............................... 597
19.2 Current issues ........................................ 598
19.2.1 Stopping CFC production ........................ 598
19.2.2 Substitution of fluids ......................... 599
19.3 Basic refrigeration cycle ............................. 601
19.3.1 Principle of operation ......................... 601
19.3.2 Energy and exergy balances ..................... 603
19.4 Superheated and sub-cooled cycle ...................... 606
19.4.1 Single-stage cycle without heat exchanger ...... 606
19.4.2 Single-stage cycle with exchanger .............. 606
19.5 Two-stage cycles ...................................... 607
19.5.1 Two-stage compression cycle with intermediate
cooling ........................................ 607
19.5.2 Compression and expansion multistage cycles .... 608
19.6 Special cycles ........................................ 614
19.6.1 Cascade cycles ................................. 614
19.6.2 Cycles using blends ............................ 615
19.6.3 Cycles using ejectors .......................... 617
19.6.4 Reverse Bray ton cycles ........................ 622
19.7 Heat pumps ............................................ 624
19.7.1 Basic cycle .................................... 625
19.7.2 Exergy balance ................................. 626
19.8 Technological aspects ................................. 627
19.8.1 Desirable properties for fluids ................ 627
19.8.2 Refrigeration compressors ...................... 628
19.8.3 Expansion valves ............................... 631
19.8.4 Heat exchangers ................................ 631
19.8.5 Auxiliary devices .............................. 633
19.8.6 Variable speed ................................. 633
References ................................................. 633
Further reading ............................................ 634
20 Liquid Absorption Refrigeration Cycles ..................... 635
20.1 Introduction .......................................... 635
20.2 Study of a NH3-H2Q absorption cycle ................... 636
20.3 Modeling LiBr-H20 absorption cycle in Thermoptim ..... 642
References ................................................. 643
21 Air Conditioning ........................................... 645
21.1 Basics of an air conditioning system .................. 645
21.2 Examples of cycles .................................... 647
21.2.1 Summer air conditioning ........................ 648
21.2.2 Winter air conditioning ........................ 649
References ................................................. 652
Further reading ............................................ 652
22 Optimization by Systems Integration ........................ 653
22.1 Basic principles ...................................... 654
22.1.1 Pinch point .................................... 654
22.1.2 Integration of complex heat system ............. 655
22.2 Design of exchanger networks .......................... 658
22.3 Minimizing the pinch .................................. 659
22.3.1 Implementation of the algorithm ................ 660
22.3.2 Establishment of actual composite curves ....... 663
22.3.3 Plot of the Carnot factor difference curve
(CFDC) ......................................... 663
22.3.4 Matching exchange streams ...................... 665
22.3.5 Thermal machines and heat integration .......... 670
22.4 Optimization by irreversibility analysis .............. 671
22.4.1 Component irreversibility and systemic
irreversibility ................................ 671
22.4.2 Optimization method ............................ 674
22.5 Implementation in Thermoptim .......................... 676
22.5.1 Principle ...................................... 676
22.5.2 Optimization frame ............................. 677
22.6 Example ............................................... 682
22.6.1 Determination of HP and LP flow rates .......... 683
22.6.2 Matching fluids in heat exchangers ............. 684
References ................................................. 690
Further reading ............................................ 690
4 Innovative Advanced Cycles, including Low Environmental
Impact ..................................................... 691
23 External Class Development ................................. 693
23.1 General, external substances .......................... 693
23.1.1 Introducing custom components .................. 693
23.1.2 Simple substance: example of DowTherm A ........ 696
23.1.3 Coupling to a thermodynamic properties
server ......................................... 697
23.2 Flat plate solar collectors ........................... 699
23.2.1 Design of the external component .............. 699
23.3 Calculation of moist mixtures in external classes ..... 702
23.3.1 Introduction ................................... 702
23.3.2 Methods available in the external classes ...... 703
23.4 External combustion ................................... 707
23.4.1 Model of biomass combustion .................... 707
23.4.2 Presentation of the external class ............. 710
23.5 Cooling coil with condensation ........................ 710
23.5.1 Modeling a cooling coil with condensation in
Thermoptim ..................................... 711
23.5.2 Study of the external class
Dehumidifying Coil ............................. 712
23.6 Cooling towers ........................................ 715
23.6.1 Modeling of a direct contact cooling tower in
Thermoptim ..................................... 716
23.6.2 Study of external class Direct Cooling Tower ... 719
23.7 External drivers ...................................... 721
23.7.1 Stirling engine driver ......................... 721
23.7.2 Creation of the class: visual interface ........ 722
23.7.3 Recognition of component names ................. 723
23.7.4 Calculations and display ....................... 723
23.8 External class manager ................................ 724
24 Advanced Gas Turbines Cycles ............................... 727
24.1 Humid air gas turbine ................................. 727
24.2 Supercritical CO2 cycles .............................. 732
24.2.1 Simple regeneration cycle ...................... 732
24.2.2 Pre-compression cycle .......................... 733
24.2.3 Recompression cycle ............................ 734
24.2.4 Partial cooling cycle .......................... 736
24.3 Advanced combined cycles .............................. 737
24.3.1 Air combined cycle ............................. 737
24.3.2 Steam flash combined cycle ..................... 739
24.3.3 Steam recompression combined cycle ............. 741
24.3.4 Kalina cycle ................................... 741
References ................................................. 750
25 Evaporation, Mechanical Vapor Compression, Desalination,
Drying by Hot Gas .......................................... 751
25.1 Evaporation ........................................... 751
25.1.1 Single-effect cycle ............................ 751
25.1.2 Multi-effect cycle ............................. 752
25.1.3 Boiling point elevation ........................ 753
25.2 Mechanical vapor compression .......................... 754
25.2.1 Evaporative mechanical vapor compression
cycle .......................................... 754
25.2.2 Types of compressors used ...................... 755
25.2.3 Design parameters of a VC ...................... 755
25.3 Desalination .......................................... 757
25.3.1 Simple effect distillation ..................... 757
25.3.2 Double effect desalination cycle ............... 758
25.3.3 Mechanical vapor compression desalination
cycle .......................................... 758
25.3.4 Desalination ejector cycle ..................... 758
25.3.5 Multi-stage flash desalination cycle ........... 759
25.3.6 Reverse osmosis desalination ................... 761
25.4 Drying by hot gas ..................................... 764
References ................................................. 766
26 Cryogenic Cycles ........................................... 767
26.1 Joule-Thomson isenthalpic expansion process .......... 767
26.1.1 Basic cycle .................................... 767
26.1.2 Linde cycle .................................... 769
26.1.3 Linde cycles for nitrogen liquefaction ......... 770
26.2 Reverse Brayton cycle ................................. 772
26.3 Mixed processes: Claude cycle ......................... 773
26.4 Cascade cycles ........................................ 774
References ................................................. 775
27 Electrochemical Converters ................................. 777
27.1 Fuel cells ............................................ 777
27.1.1 SOFC modeling .................................. 780
27.1.2 Improving the cell model ....................... 782
27.1.3 Model with a thermocoupler ..................... 784
27.1.4 Coupling SOFC fuel cell with a gas turbine ..... 784
27.1.5 Change in the model to replace H2 by CH4 ....... 786
27.2 Reforming ............................................. 789
27.2.1 Modeling of a reformer in Thermoptim ........... 789
27.2.2 Results ........................................ 792
27.3 Electrolysers ......................................... 792
27.3.1 Modeling of a high temperature electrolyser
in Thermoptim .................................. 793
27.3.2 Results ........................................ 794
References ................................................. 795
28 Global Warming and Capture and Sequestration of CO2 ........ 797
28.1 Problem data .......................................... 797
28.2 Carbon capture and storage ............................ 798
28.2.1 Introduction ................................... 798
28.2.2 Capture strategies ............................. 800
28.3 Techniques implemented ................................ 801
28.3.1 Post-combustion techniques ..................... 801
28.3.2 Pre-combustion techniques ...................... 804
28.3.3 Oxycombustion techniques ....................... 814
References ................................................. 825
29 Future Nuclear Reactors .................................... 827
29.1 Introduction .......................................... 827
29.2 Reactors coupled to Hirn cycles ....................... 829
29.2.1 Sodium cooled fast neutron reactors ............ 829
29.2.2 Supercritical water reactors ................... 830
29.3 Reactors coupled to Brayton cycles .................... 830
29.3.1 Small capacity modular reactor PBMR ............ 831
29.3.2 GT-MHR reactors ................................ 832
29.3.3 Very high temperature reactors ................. 833
29.3.4 Gas cooled fast neutron reactors ............... 834
29.3.5 Lead cooled fast reactors ...................... 834
29.3.6 Molten salt reactors ........................... 834
29.3.7 Thermodynamic cycles of high temperature
reactors ....................................... 835
29.4 Summary ............................................... 840
References ................................................. 840
30 Solar Thermodynamic Cycles ................................. 841
30.1 Direct conversion of solar energy .................... 841
30.1.1 Introduction .................................. 841
30.1.2 Thermal conversion of solar energy ............ 842
30.1.2 Thermodynamic cycles considered ............... 844
30.2 Performance of solar collectors ....................... 845
30.2.1 Low temperature solar collectors ............... 845
30.2.2 Low temperature flat plate solar collector
model .......................................... 846
30.2.3 High temperature solar collectors .............. 847
30.2.4 Modeling high temperature concentration
collectors ..................................... 847
30.3 Parabolic trough plants ............................... 849
30.3.1 Optimization of the collector temperature ...... 849
30.3.2 Plant model .................................... 850
30.4 Parabolic dish systems ................................ 851
30.5 Power towers .......................................... 852
30.6 Hybrid systems ........................................ 853
References ................................................. 854
31 Other than Solar NRE cycles ................................ 855
31.1 Solar ponds ........................................... 855
31.1.1 Analysis of the problem ........................ 856
31.1.2 Plot of the cycle in the entropy chart ......... 857
31.1.3 Exergy balance ................................. 857
31.1.4 Auxiliary consumption .......................... 857
31.2 Ocean thermal energy conversion (OTEC) ................ 858
31.2.1 OTEC closed cycle .............................. 859
31.2.2 OTEC open cycle ................................ 861
31.2.3 Uehara cycle ................................... 862
31.3 Geothermal cycles ..................................... 864
31.3.1 Direct-steam plants ............................ 865
31.3.2 Simple flash plant ............................. 865
31.3.3 Double flash plant ............................. 867
31.3.4 Binary cycle plants ............................ 868
31.3.5 Kalina cycle ................................... 869
31.3.6 Combined cycles ................................ 870
31.3.7 Mixed cycle .................................... 872
31.4 Use of biomass energy ................................. 873
31.4.1 Introduction ................................... 873
31.4.2 Modeling thermochemical conversion ............. 875
References ................................................. 878
32 Heat and Compressed Air Storage ............................ 879
32.1 Introduction .......................................... 879
32.2 Methodological aspects ................................ 880
32.3 Cold storage in phase change nodules .................. 881
32.4 Project Sether (electricity storage as high
temperature heat) ..................................... 881
32.5 Compressed air storage devices ........................ 883
32.5.1 CAES (Compressed Air Energy Storage) concept ... 883
32.5.2 Peaker concept of Electricite de Marseille
Company ........................................ 884
32.5.3 Hydropneumatic energy storage HPES ............. 884
References ................................................. 887
33 Calculation of Thermodynamic Solar Installations ........... 889
33.1 Specific solar problems ............................... 889
33.2 Estimation of the solar radiation received by
a solar collector ..................................... 891
33.3 Cumulative frequency curves of irradiation ............ 893
33.3.1 Curve construction ............................. 894
33.3.2 Curve smoothing ................................ 894
33.3.3 Estimation of CFCS from empirical formulas ..... 895
33.3.4 Interpolation on tilt .......................... 896
33.4 Hourly simulation models .............................. 896
33.5 Simplified design methods ............................. 897
33.5.1 Principle of methods ........................... 897
33.5.2 Usability curves ............................... 897
References ................................................. 899
5 Technological Design and Off-design Operation .............. 901
34 Technological Design and Off-design Operation, Model
Reduction .................................................. 903
34.1 Introduction .......................................... 903
34.2 Component technological design ........................ 905
34.2.1 Heat exchangers ................................ 906
34.2.2 Displacement compressors ....................... 908
34.2.3 Expansion valves ............................... 909
34.2.4 Practical example: design of a cycle ........... 909
34.3 Off-design calculations ............................... 914
34.3.1 Principle of computing coupled systems in
Thermoptim ..................................... 914
34.3.2 Off-design equations of the refrigerator ....... 915
34.3.3 After processing of simulation results ......... 916
34.3.4 Effect of change in UA ......................... 917
34.4 Development of simplified models of systems studied ... 919
34.4.1 Model reduction principle ...................... 919
34.4.2 Model reduction example ........................ 920
34.5 Methodological difficulties ........................... 921
References ................................................. 922
35 Technological Design and Off-design Behavior of Heat
Exchangers ................................................. 923
35.1 Introduction .......................................... 923
35.1.1 General ........................................ 923
35.1.2 Reminders on the NTU method .................... 924
35.2 Modeling of heat transfer ............................. 925
35.2.1 Extended surfaces .............................. 925
35.2.2 Calculation of Reynolds and Prandtl numbers .... 926
35.2.3 Calculation of the Nusselt number .............. 927
35.2.4 Calculation of multi-zone exchangers ........... 929
35.3 Pressure drop calculation ............................. 933
35.3.1 Gas or liquid state pressure drop .............. 933
35.3.2 Two-phase pressure drop ........................ 934
35.4 Heat exchanger technological screen ................... 935
35.4.1 Heat exchanger technological screen ............ 935
35.4.2 Correlations used in Thermoptim ................ 935
35.5 Model parameter estimation ............................ 937
35.5.1 Direct setting from geometric data ............. 937
35.5.2 Identification of exchanger parameters ......... 940
References ................................................. 941
36 Modeling and Setting of Displacement Compressors ........... 943
36.1 Behavior models ....................................... 943
36.1.1 Operation at rated speed and full load ......... 945
36.1.2 Operation at partial load and speed ............ 947
36.2 Practical modeling problems ........................... 948
36.2.1 Technological screen of displacement
compressors .................................... 948
36.2.3 Identification of compressor parameters ........ 949
36.2.4 Calculation in design mode ..................... 949
36.2.5 Calculation in off-design mode ................. 949
36.2.6 Fixed V; screw compressors ..................... 949
References ................................................. 950
37 Modeling and Setting of Dynamic Compressors and Turbines ... 951
37.1 Supplements on turbomachinery ......................... 952
37.1.1 Analysis of the velocity triangle .............. 952
37.1.2 Degree of reaction of one stage ................ 953
37.1.3 Theoretical characteristics of
turbomachinery ................................. 954
37.1.4 Real characteristics of turbomachinery ......... 956
37.1.5 Factors of similarity .......................... 959
37.2 Pumps and fans ........................................ 961
37.3 Dynamic compressors ................................... 963
37.3.1 Performance maps of dynamic compressors ........ 963
37.3.2 Analysis of performance maps of dynamic
compressors .................................... 965
37.3.3 Technological screen of dynamic compressors .... 970
37.4 Turbines .............................................. 971
37.4.1 Performance maps of turbines ................... 972
37.4.2 Isentropic efficiency law ...................... 973
37.4.3 Stodola's cone rule ............................ 975
37.4.4 Baumann rule ................................... 977
37.4.5 Loss by residual velocity ...................... 978
37.4.6 Technological screen of turbines ............... 979
37.4.8 Identification of turbine parameters ........... 979
37.5 Nozzles ............................................... 979
References ................................................. 980
38 Case Studies ............................................... 981
38.1 Introduction .......................................... 981
38.2 Compressor filling a storage of compressed air ........ 982
38.2.1 Modeling of the heat exchanger ................. 982
38.2.2 Design of the driver ........................... 984
38.2.3 Analysis of the cooled compressor .............. 985
38.2.4 Use of the model to simulate the filling of
a compressed air storage ....................... 989
38.3 Steam power plant ..................................... 990
38.3.1 Introduction, results ......................... 990
38.4 Refrigeration machine ................................. 995
38.4.1 Introduction, results .......................... 995
38.4.2 Principle of resolution ........................ 996
38.5 Single flow turbojet .................................. 998
38.5.1 Introduction, results .......................... 999
38.5.2 Presentation of the external class ............ 1003
Index ........................................................ 1005
|