Dierkes U. Regularity of minimal surfaces (Berlin; Heidelberg, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDierkes U. Regularity of minimal surfaces / U.Dierkes, S.Hildebrandt, A.J.Tromba. - Rev and enl. 2nd ed. - Berlin; Heidelberg, 2010. - xvii, 623 p.: ill. - (Grundlehren der mathematischen Wissenschaften; 340). - Bibliogr.: p.561-617. - Ind.: p.619-623. - ISBN 978-3-642-11699-5; ISSN 0072-7830
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Part I. Boundary Behaviour of Minimal Surfaces

Chapter 1. Minimal Surfaces with Free Boundaries ................ 3
1.1  Surfaces of Class H2¹ and Homotopy Classes of Their 
     Boundary Curves. Nonsolvability of the Free Boundary 
     Problem with Fixed Homotopy Type of the Boundary
     Traces ..................................................... 5
1.2  Classes of Admissible Functions. Linking Condition ........ 18
1.3  Existence of Minimizers for the Free Boundary Problem ..... 21
1.4  Stationary Minimal Surfaces with Free or Partially Free
     Boundaries and the Transversality Condition ............... 28
1.5  Necessary Conditions for Stationary Minimal Surfaces ...... 35
1.6  Existence of Stationary Minimal Surfaces in a Simplex ..... 39
1.7  Stationary Minimal Surfaces of Disk-Type in a Sphere ...... 41
1.8  Report on the Existence of Stationary Minimal Surfaces
     in Convex Bodies .......................................... 43
1.9  Nonuniqueness of Solutions to a Free Boundary Problem.
     Families of Solutions ..................................... 45
1.10 Scholia ................................................... 65

Chapter 2. The Boundary Behaviour of Minimal Surfaces .......... 75
2.1  Potential-Theoretic Preparations .......................... 76
2.2  Solutions of Differential Inequalities .................... 90
2.3  The Boundary Regularity of Minimal Surfaces Bounded by
     Jordan Arcs .............................................. 102
2.4  The Boundary Behaviour of Minimal Surfaces at Their
     Free Boundary: A Survey of the Results and an Outline 
     of Their Proofs .......................................... 112
2.5  Holder Continuity for Minima ............................. 118
2.6  Holder Continuity for Stationary Surfaces ................ 130
2.7  C¹,½ -Regularity ......................................... 153
2.8  Higher Regularity in Case of Support Surfaces with
     Empty Boundaries. Analytic Continuation Across a Free
     Boundary ................................................. 174
2.9  A Different Approach to Boundary Regularity .............. 181
2.10 Asymptotic Expansion of Minimal Surfaces at Boundary
     Branch Points and Geometric Consequences ................. 189
2.11 The Gauss-Bonnet Formula for Branched Minimal Surfaces ... 193
2.12 Scholia .................................................. 200

Chapter 3. Singular Boundary Points of Minimal Surfaces ....... 213
3.1  The Method of Hartman and Wintner, and Asymptotic
     Expansions at Boundary Branch Points ..................... 214
3.2  A Gradient Estimate at Singularities Corresponding to
     Corners of the Boundary .................................. 235
3.3  Minimal Surfaces with Piecewise Smooth Boundary 
     Curves and Their Asymptotic Behaviour at Corners ......... 245
3.4  An Asymptotic Expansion for Solutions of the Partially
     Free Boundary Problem .................................... 259
3.5  Scholia .................................................. 271
     3.5.1  References ........................................ 271
     3.5.2  Holder Continuity at Intersection Points .......... 271

Part II. Geometric Properties of Minimal Surfaces and H-
         Surfaces

Chapter 4. Enclosure and Existence Theorems for Minimal
           Surfaces and H-Surfaces. Isoperimetric 
           Inequalities ....................................... 279
4.1  Applications of the Maximum Principle and Nonexistence
     of Multiply Connected Minimal Surfaces with Prescribed
     Boundaries ............................................... 280
4.2  Touching H-Surfaces and Enclosure Theorems. Further
     Nonexistence Results ..................................... 284
4.3  Minimal Submanifolds and Submanifolds of Bounded Mean
     Curvature. An Optimal Nonexistence Result ................ 295
     4.3.1  An Optimal Nonexistence Result for Minimal
            Submanifolds of Codimension One ................... 311
4.4  Geometric Maximum Principles ............................. 314
     4.4.1  The Barrier Principle for Submanifolds of
            Arbitrary Codimension ............................. 314
     4.4.2  A Geometric Inclusion Principle for Strong
            Subsolutions  ..................................... 322
4.5  Isoperimetric Inequalities ............................... 332
4.6  Estimates for the Length of the Free Trace ............... 346
4.7  Obstacle Problems and Existence Results for Surfaces of
     Prescribed Mean Curvature ................................ 371
4.8  Surfaces of Prescribed Mean Curvature in a Riemannian
     Manifold ................................................. 407
     4.8.1  Estimates for Jacobi Fields ....................... 408
     4.8.2  Riemann Normal Coordinates ........................ 418
     4.8.3  Surfaces of Prescribed Mean Curvature in a
            Riemannian Manifold ............................... 424
4.9  Scholia .................................................. 431
     4.9.1  Enclosure Theorems and Nonexistence ............... 431
     4.9.2  The Isoperimetric Problem. Historical Remarks 
            and References to the Literature .................. 433
     4.9.3  Experimental Proof of the Isoperimetric 
            Inequality......................................... 435
     4.9.4  Estimates for the Length of the Free Trace ........ 435
     4.9.5  The Plateau Problem for H-Surfaces ................ 437

Chapter 5. The Thread Problem ................................. 441
5.1  Experiments and Examples. Mathematical Formulation of
     the Simplest Thread Problem .............................. 441
5.2  Existence of Solutions to the Thread Problem ............. 446
5.3  Analyticity of the Movable Boundary ...................... 463
5.4  Scholia .................................................. 483

Chapter 6. Branch Points ...................................... 487
6.1  The First Five Variations of Dirichlet's Integral, and
     Forced Jacobi Fields ..................................... 488
6.2  The Theorem for n + 1 Even and m + 1 Odd ................. 519
6.3  Boundary Branch Points ................................... 528
6.4  Scholia .................................................. 554

Bibliography .................................................. 561
Index ......................................................... 619


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:12 2019. Размер: 10,278 bytes.
Посещение N 1478 c 06.11.2012