Dierkes U. Global analysis of minimal surfaces (Berlin; Heidelberg, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDierkes U. Global analysis of minimal surfaces / U.Dierkes, S.Hildebrandt, A.J.Tromba. - Rev. and enlarged 2nd ed. - Berlin; Heidelberg: Springer, 2010. - xvi, 537 p.: ill. - (Grundlehren der mathematischen Wissenschaften; 341). - Bibliogr.: p.477-529. - Ind.: p.531-537. - ISBN 978-3-642-11705-3
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Part I. Free Boundaries and Bernstein Theorems

Chapter 1  Minimal Surfaces with Supporting Half-Planes ......... 3
1.1  An Experiment .............................................. 4
1.2  Examples of Minimal Surfaces with Cusps on the Supporting
     Surface .................................................... 7
1.3  Setup of the Problem. Properties of Stationary 
     Solutions ................................................. 11
1.4  Classification of the Contact Sets ........................ 13
1.5  Nonparametric Representation, Uniqueness, and Symmetry
     of Solutions .............................................. 18
1.6  Asymptotic Expansions for Surfaces of Cusp-Types I
     and III. Minima of Dirichlet's Integral ................... 21
1.7  Asymptotic Expansions for Surfaces of the Tongue/Loop-
     Type II ................................................... 23
1.8  Final Results on the Shape of the Trace. Absence of
     Cusps. Optimal Boundary Regularity ........................ 26
1.9  Proof of the Representation Theorem ....................... 28
1.10 Scholia ................................................... 34

Chapter 2  Embedded Minimal Surfaces with Partially Free
           Boundaries .......................................... 37
2.1  The Geometric Setup ....................................... 38
2.2  Inclusion and Monotonicity of the Free Boundary Values .... 44
2.3  A Modification of the Kneser-Radó Theorem ................. 50
2.4  Properties of the Gauss Map, and Stable Surfaces .......... 52
2.5  Uniqueness of Minimal Surfaces that Lie on One Side
     of the Supporting Surface ................................. 60
2.6  Uniqueness of Freely Stable Minimal Surfaces .............. 66
2.7  Asymptotic Expansions ..................................... 74
2.8  Edge Creeping ............................................. 86
2.9  Embedded Minimizers for Nonsmooth Supporting Surfaces ..... 96
2.10 A Bernstein Theorem for Minimal Surfaces in a Wedge ...... 108
2.11 Scholia .................................................. 126

Chapter 3. Bernstein Theorems and Related Results ............. 135
3.1  Entire and Exterior Minimal Graphs of Controlled 
     Growth ................................................... 137
     3.1.1  Jörgens's Theorem ................................. 137
     3.1.2  Asymptotic Behaviour for Solutions of Linear and
            Quasilinear Equations, Moser's Bernstein 
            Theorem ........................................... 140
     3.1.3  The Interior Gradient Estimate and Consequences ... 144
3.2  First and Second Variation Formulae ...................... 145
     3.2.1  First and Second Variation of the Area Integral ... 146
     3.2.2  First and Second Variation Formulae for Singular
            Minimal Surfaces .................................. 152
3.3  Some Geometric Identities ................................ 156
     3.3.1  Covariant Derivatives of Tensor Fields ............ 159
     3.3.2  Simons's Identity and Jacobi's Field Equation ..... 161
3.4  Nonexistence of Stable Cones and Integral Curvature
     Estimates. Further Bernstein Theorems .................... 163
     3.4.1  Stability of Minimal Cones ........................ 164
     3.4.2  Nonexistence of Stable Cones ...................... 172
     3.4.3  Integral Curvature Estimates for Minimal and
            a-Minimal Hypersurfaces. Further Bernstein
            Theorems .......................................... 180
3.5  Monotonicity and Mean Value Formulae. Michael-Simon
     Inequalities ............................................. 198
3.6  Pointwise Curvature Estimates ............................ 217
3.7  Scholia .................................................. 236
     3.7.1  References to the Literature on Bernstein's 
            Theorem and Curvature Estimates for n = 2 ......... 236
     3.7.2  Bernstein Theorems and Curvature Estimates
            for n ≥ 3 dimensions .............................. 238
     3.7.3  Bernstein Theorems in Higher Codimensions ......... 242
     3.7.4  Sobolev Inequalities .............................. 245

Part II. Global Analysis of Minimal Surfaces

Chapter 4  The General Problem of Plateau: Another Approach ... 249
4.1  The General Problem of Plateau. Formulation and
     Examples ................................................. 249
4.2  A Geometric Approach to Teichmьller Theory of Oriented
     Surfaces ................................................. 255
4.3  Symmetric Riemann Surfaces and Their Teichmüller
     Spaces ................................................... 263
4.4  The Mumford Compactness Theorem .......................... 271
4.5  The Variational Problem .................................. 276
4.6  Existence Results for the General Problem of Plateau in
     fig.13 ....................................................... 285
4.7  Scholia .................................................. 296

Chapter 5  The Index Theorems for Minimal Surfaces of Zero
           and Higher Genus ................................... 299
5.1  Introduction ............................................. 299
5.2  The Statement of the Index Theorem of Genus Zero ......... 302
5.3  Stratification of Harmonic Surfaces by Singularity 
     Type ..................................................... 304
5.4  Stratification of Harmonic Surfaces with Regular
     Boundaries by Singularity Type ........................... 318
5.5  The Index Theorem for Classical Minimal Surfaces ......... 324
5.6  The Forced Jacobi Fields ................................. 329
5.7  Some Theorems on the Linear Algebra of Fredholm Maps ..... 341
5.8  Generic Finiteness, Stability, and the Stratification
     of the Sets fig.2λ0 .......................................... 347
5.9  The Index Theorem for Higher Genus Minimal Surfaces
     Statement and Preliminaries .............................. 353
5.10 Review of Some Basic Results in Riemann Surface Theory ... 354
5.11 Vector Bundles over Teichmüller Space .................... 359
5.12 Some Results on Maximal Ideals in Sobolev Algebras of
     Holomorphic Functions .................................... 364
5.13 Minimal Surfaces as Zeros of a Vector Field, and the
     Conformality Operators ................................... 365
5.14 The Corank of the Partial Conformality Operators ......... 369
5.15 The Corank of the Complete Conformality Operators ........ 377
5.16 Manifolds of Harmonic Surfaces of Prescribed Branching
     Type ..................................................... 380
5.17 The Proof of the Index Theorem ........................... 385
5.18 Scholia .................................................. 399

Chapter 6  Euler Characteristic and Morse Theory for Minimal
           Surfaces ........................................... 401
6.1  Fredholm Vector Fields ................................... 402
6.2  The Gradient Vector Field Associated to Plateau's
     Problem .................................................. 405
6.3  The Euler Characteristic χ(Wα) of Wα ..................... 411
6.4  The Sard-Brown Theorem for Functional .................... 423
6.5  The Morse Lemma .......................................... 424
6.6  The Normal Form of Dirichlet's Energy about a Generic
     Minimal Surface in fig.13 .................................... 436
6.7  The Local Winding Number of Wα about a Generically
     Branched Minimal Surface in fig.13 ........................... 442
6.8  Scholia .................................................. 447
     6.8.1  Historical Remarks and References to the
            Literature ........................................ 447
     6.8.2  On the Generic Nondegeneracy of Closed Minimal
            Surfaces in Riemannian Manifolds and Morse
            Theory ............................................ 449
Bibliography .................................................. 477

Index ......................................................... 531


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:12 2019. Размер: 12,099 bytes.
Посещение N 1442 c 06.11.2012