Coldren L.A. Diode lasers and photonic integrated circuits (Hoboken, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаColdren L.A. Diode lasers and photonic integrated circuits / L.A.Coldren, S.W.Corzine, M.L.Mašanović. - 2nd ed. - Hoboken: Wiley, 2012. - xxiii, 709 p.: ill. - (Wiley series in microwave and optical engineering; 218). - Incl. bibl. ref. - Ind.: p.697-709. - ISBN 978-0-470-48412-8
 

Место хранения: 053 | Институт лазерной физики CO РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ...................................................... xvii
Acknowledgments ............................................... xxi
List of Fundamental Constants ............................... xxiii
1  Ingredients .................................................. 1
   1.1  Introduction ............................................ 1
   1.2  Energy Levels and Bands in Solids ....................... 5
   1.3  Spontaneous and Stimulated Transitions: The Creation
        of Light ................................................ 7
   1.4  Transverse Confinement of Carriers and Photons in
        Diode Lasers: The Double Heterostructure ............... 10
   1.5  Semiconductor Materials for Diode Lasers ............... 13
   1.6  Epitaxial Growth Technology ............................ 20
   1.7  Lateral Confinement of Current, Carriers, and Photons
        for Practical Lasers ................................... 24
   1.8  Practical Laser Examples ............................... 31
   References .................................................. 39
   Reading List ................................................ 40
2  A Phenomenological Approach to Diode Lasers ................. 45
   2.1  Introduction ........................................... 45
   2.2  Carrier Generation and Recombination in Active
        Regions ................................................ 46
   2.1  Spontaneous Photon Generation and LEDs ................. 49
   2.4  Photon Generation and Loss in Laser Cavities ........... 52
   2.5  Threshold or Steady-State Gain in Lasers ............... 55
   2.6  Threshold Current and Power Out Versus Current ......... 60
        2.6.1  Basic P-I Characteristics ....................... 60
        2.6.2  Gain Models and Their Use in Designing Lasers ... 64
   2.7  Relaxation Resonance and Frequency Response ............ 70
   2.8  Characterizing Real Diode Lasers ....................... 74
        2.8.1  Internal Parameters for In-Plane Lasers:
               (αi), ηi, and g versus J ....................... 75
        2.8.2  Internal Parameters for VCSELs: ηi and g versus
               J, (αi), and αm ................................. 78
        2.8.3  Efficiency and Heat Flow ........................ 79
        2.8.4  Temperature Dependence of Drive Current ......... 80
        2.8.5  Derivative Analysis ............................. 84
   References .................................................. 86
   Reading List ................................................ 87
   Problems .................................................... 87
3  Mirrors and Resonators for Diode Lasers ..................... 91
   3.1  Introduction ........................................... 91
   3.2  Scattering Theory ...................................... 92
   3.3  S and T Matrices for Some Common Elements .............. 95
        3.3.1  The Dielectric Interface ........................ 96
        3.3.2  Transmission Line with No Discontinuities ....... 98
        3.3.3  Dielectric Segment and the Fabry-Perot
               Etalon ......................................... 100
        3.3.4  S-Parameter Computation Using Mason's Rule ..... 104
        3.3.5  Fabry-Perot Laser .............................. 105
   3.4  Three- and Four-Mirror Laser Cavities ................. 107
        3.4.1  Three-Mirror Lasers ............................ 107
        3.4.2  Four-Mirror Lasers ............................. 111
   3.5  Gratings .............................................. 113
        3.5.1  Introduction ................................... 113
        3.5.2  Transmission Matrix Theory of Gratings ......... 115
        3.5.3  Effective Mirror Model for Gratings ............ 121
   3.6  Lasers Based on DBR Mirrors ........................... 123
        3.6.1  Introduction ................................... 123
        3.6.2  Threshold Gain and Power Out ................... 124
        3.6.3  Mode Selection in DBR-Based Lasers ............. 127
        3.6.4  VCSEL Design ................................... 128
        3.6.5  In-Plane DBR Lasers and Tunability ............. 135
        3.6.6  Mode Suppression Ratio in DBR Laser ............ 139
   3.7  DFB Lasers ............................................ 141
        3.7.1  Introduction ................................... 141
        3.7.2  Calculation of the Threshold Gains and
               Wavelengths .................................... 143
        3.7.3  On Mode Suppression in DFB Lasers .............. 149
   References ................................................. 151
   Reading List ............................................... 151
   Problems ................................................... 151
4  Gain and Current Relations ................................. 157
   4.1  Introduction .......................................... 157
   4.2  Radiative Transitions ................................. 158
        4.2.1  Basic Definitions and Fundamental
               Relationships .................................. 158
        4.2.2  Fundamental Description of the Radiative
               Transition Rate ................................ 162
        4.2.3  Transition Matrix Element ...................... 165
        4.2.4  Reduced Density of States ...................... 170
        4.2.5  Correspondence with Einstein's Stimulated
               Rate Constant .................................. 174
   4.3  Optical Gain .......................................... 174
        4.3.1  General Expression for Gain .................... 174
        4.3.2  Lineshape Broadening ........................... 181
        4.3.3  General Features of the Gain Spectrum .......... 185
        4.3.4  Many-Body Effects .............................. 187
        4.3.5  Polarization and Piezoelectricity .............. 190
   4.4  Spontaneous Emission .................................. 192
        4.4.1  Single-Mode Spontaneous Emission Rate .......... 192
        4.4.2  Total Spontaneous Emission Rate ................ 193
        4.4.3  Spontaneous Emission Factor .................... 198
        4.4.4  Purcell Effect ................................. 198
   4.5  Nonradiative Transitions .............................. 199
        4.5.1  Defect and Impurity Recombination .............. 199
        4.5.2  Surface and Interface Recombination ............ 202
        4.5.3  Auger Recombination ............................ 211
   4.6  Active Materials and Their Characteristics ............ 218
        4.6.1  Strained Materials and Doped Materials ......... 218
        4.6.2  Gain Spectra of Common Active Materials ........ 220
        4.6.3  Gain versus Carrier Density .................... 223
        4.6.4  Spontaneous Emission Spectra and Current
               versus Carrier Density ......................... 227
        4.6.5  Gain versus Current Density .................... 229
        4.6.6  Experimental Gain Curves ....................... 233
        4.6.7  Dependence on Well Width, Doping, and
               Temperature .................................... 234
   References ................................................. 238
   Reading List ............................................... 240
   Problems ................................................... 240
5  Dynamic Effects ............................................ 247
   5.1  Introduction .......................................... 247
   5.2  Review of Chapter 2 ................................... 248
        5.2.1  The Rate Equations ............................. 249
        5.2.2  Steady-State Solutions ......................... 250
               Case (i): Well Below Threshold ................. 251
               Case (ii): Above Threshold ..................... 252
               Case (iii): Below and Above Threshold .......... 253
        5.2.3  Steady-State Multimode Solutions ............... 255
   5.3  Differential Analysis of the Rate Equations ........... 257
        5.3.1  Small-Signal Frequency Response ................ 261
        5.3.2  Small-Signal Transient Response ................ 266
        5.3.3  Small-Signal FM Response or Frequency
               Chirping ....................................... 270
   5.4  Large-Signal Analysis ................................. 276
        5.4.1  Large-Signal Modulation: Numerical Analysis
               of the Multimode Rate Equations ................ 277
        5.4.2  Mode Locking ................................... 279
        5.4.3  Turn-On Delay .................................. 283
        5.4.4  Large-Signal Frequency Chirping ................ 286
   5.5  Relative Intensity Noise and Linewidth ................ 288
        5.5.1  General Definition of RIN and the Spectral
               Density Function ............................... 288
        5.5.2  The Schawlow-Townes Linewidth .................. 292
        5.5.3  The Langevin Approach .......................... 294
        5.5.4  Langevin Noise Spectral Densities and RIN ...... 295
        5.5.5  Frequency Noise ................................ 301
        5.5.6  Linewidth ...................................... 303
   5.6  Carrier Transport Effects ............................. 308
   5.7  Feedback Effects and Injection Locking ................ 311
        5.7.1  Optical Feedback Effects—Static
               Characteristics ................................ 311
        5.7.2  Injection Locking—Static Characteristics ....... 317
        5.7.3  Injection and Feedback Dynamic
               Characteristics and Stability .................. 320
        5.7.4  Feedback Effects on Laser Linewidth ............ 321
   References ................................................. 328
   Reading List ............................................... 329
   Problems ................................................... 329
6  Perturbation, Coupled-Mode Theory, Modal Excitations, and
   Applications ............................................... 335
   6.1  Introduction .......................................... 335
   6.2  Guided-Mode Power and Effective Width ................. 336
   6.3  Perturbation Theory ................................... 339
   6.4  Coupled-Mode Theory: Two-Mode Coupling ................ 342
        6.4.1  Contradirectional Coupling: Gratings ........... 342
        6.4.2  DFB Lasers ..................................... 353
        6.4.3  Codirectional Coupling: Directional Couplers ... 356
        6.4.4  Codirectional Coupler Filters and Electro-
               optic Switches ................................. 370
   6.5  Modal Excitation ...................................... 376
   6.6  Two Mode Interference and Multimode Interference ...... 378
   6.7  Star Couplers ......................................... 381
   6.8  Photonic Multiplexers, Demultiplexers and Routers ..... 382
        6.8.1  Arrayed Waveguide Grating De/Multiplexers
               and Routers .................................... 383
        6.8.2  Echelle Grating based De/Multiplexers and
               Routers ........................................ 389
   6.9  Conclusions ........................................... 390
   References ................................................. 390
   Reading List ............................................... 391
   Problems ................................................... 391
7  Dielectric Waveguides ...................................... 395
   7.1  Introduction .......................................... 395
   7.2  Plane Waves Incident on a Planar Dielectric
        Boundary .............................................. 396
   7.3  Dielectric Waveguide Analysis Techniques .............. 400
        7.3.1  Standing Wave Technique ........................ 400
        7.3.2  Transverse Resonance ........................... 403
        7.3.3  WKB Method for Arbitrary Waveguide Profiles .... 410
        7.3.4  2-D Effective Index Technique for Buried Rib
               Waveguides ..................................... 418
        7.3.5  Analysis of Curved Optical Waveguides using
               Conformal Mapping .............................. 421
        7.3.6  Numerical Mode Solving Methods for Arbitrary
               Waveguide Profiles ............................. 424
   7.4  Numerical Techniques for Analyzing PICs ............... 427
        7.4.1  Introduction ................................... 427
        7.4.2  Implicit Finite-Difference Beam-Propagation
               Method ......................................... 429
        7.4.3  Calculation of Propagation Constants in а
               z-invariant Waveguide from a Beam Propagation
               Solution ....................................... 432
        7.4.4  Calculation of Eigenmode Profile from a Beam
               Propagation Solution ........................... 434
   7.5  Goos-Hanchen Effect and Total Internal Reflection
        Components ............................................ 434
        7.5.1  Total Internal Reflection Mirrors .............. 435
   7.6  Losses in Dielectric Waveguides ....................... 437
        7.6.1  Absorption Losses in Dielectric Waveguides ..... 437
        7.6.2  Scattering Losses in Dielectric Waveguides ..... 438
        7.6.3  Radiation Losses for Nominally Guided Modes .... 438
   References ................................................. 445
   Reading List ............................................... 446
   Problems ................................................... 446
8  Photonic Integrated Circuits ............................... 451
   8.1  Introduction .......................................... 451
   8.2  Tunable, Widely Tunable, and Externally Modulated
        Lasers ................................................ 452
        8.2.1  Two- and Three-Section In-plane DBR Lasers ..... 452
        8.2.2  Widely Tunable Diode Lasers .................... 458
        8.2.3  Other Extended Tuning Range Diode Laser
               Implementations ................................ 463
        8.2.4  Externally Modulated Lasers .................... 474
        8.2.5  Semiconductor Optical Amplifiers ............... 481
        8.2.6  Transmitter Arrays ............................. 484
   8.3  Advanced PICs ......................................... 484
        8.3.1  Waveguide Photodetectors ....................... 485
        8.3.2  Transceivers/Wavelength Converters and
               Triplexers ..................................... 488
   8.4  PICs for Coherent Optical Communications .............. 491
        8.4.1  Coherent Optical Communications Primer ......... 492
        8.4.2  Coherent Detection ............................. 495
        8.4.3  Coherent Receiver Implementations .............. 495
        8.4.4  Vector Transmitters ............................ 498
   References ................................................. 499
   Reading List ............................................... 503
   Problems ................................................... 503

APPENDICES

1  Review of Elementary Solid-State Physics ................... 509
   A1.1  A Quantum Mechanics Primer ........................... 509
         A1.1.1  Introduction ................................. 509
         A1.1.2  Potential Wells and Bound Electrons .......... 511
   A1.2  Elements of Solid-State Physics ...................... 516
         Al.2.1  Electrons in Crystals and Energy Bands ....... 516
         A1.2.2  Effective Mass ............................... 520
         A1.2.3  Density of States Using a Free-Electron
                 (Effective Mass) Theory ...................... 522
   References ................................................. 527
   Reading List ............................................... 527
2  Relationships between Fermi Energy and Carrier Density
   and Leakage ................................................ 529
   A2.1  General Relationships ................................ 529
   A2.2  Approximations for Bulk Materials .................... 532
   A2.3  Carrier Leakage Over Heterobarriers .................. 537
   A2.4  Internal Quantum Efficiency .......................... 542
   References ................................................. 544
   Reading List ............................................... 544
3  Introduction to Optical Waveguiding in Simple Double-
   Heterostructures ........................................... 545
   A3.1  Introduction ......................................... 545
   A3.2  Three-Layer Slab Dielectric Waveguide ................ 546
         A3.2.1  Symmetric Slab Case .......................... 547
         A3.2.2  General Asymmetric Slab Case ................. 548
         A3.2.3  Transverse Confinement Factor, Гх ............ 550
   A3.3  Effective Index Technique for Two-Dimensional
         Waveguides ........................................... 551
   A3.4  Far Fields ........................................... 555
   References ................................................. 557
   Reading List ............................................... 557
4  Density of Optical Modes, Blackbody Radiation, and
   Spontaneous Emission Factor ................................ 559
   A4.1  Optical Cavity Modes ................................. 559
   A4.2  Blackbody Radiation .................................. 561
   A4.3  Spontaneous Emission Factor, βsp ..................... 562
   Reading List ............................................... 563
5  Modal Gain, Modal Loss, and Confinement Factors ............ 565
   A5.1  Introduction ......................................... 565
   A5.2  Classical Definition of Modal Gain ................... 566
   A5.3  Modal Gain and Confinement Factors ................... 568
   A5.4  Internal Modal Loss .................................. 570
   A5.5  More Exact Analysis of the Active/Passive Section
         Cavity ............................................... 571
         A5.5.1  Axial Confinement Factor ..................... 572
         A5.5.2  Threshold Condition and Differential
                 Efficiency ................................... 573
   A5.6  Effects of Dispersion on Modal Gain .................. 576
6  Einstein's Approach to Gain and Spontaneous Emission ....... 579
   A6.1  Introduction ......................................... 579
   A6.2  Einstein A and В Coefficients ........................ 582
   A6.3  Thermal Equilibrium .................................. 584
   A6.4  Calculation of Gain .................................. 585
   A6.5  Calculation of Spontaneous Emission Rate ............. 589
   Reading List ............................................... 592
7  Periodic Structures and the Transmission Matrix ............ 593
   A7.1  Introduction ......................................... 593
   A7.2  Eigenvalues and Eigenvectors ......................... 593
   A7.3  Application to Dielectric Stacks at the Bragg
         Condition ............................................ 595
   A7.4  Application to Dielectric Stacks Away from the
         Bragg Condition ...................................... 597
   A7.5  Correspondence with Approximate Techniques ........... 600
         A7.5.1  Fourier Limit ................................ 601
         A7.5.2  Coupled-Mode Limit ........................... 602
   A7.6  Generalized Reflectivity at the Bragg Condition ...... 603
   Reading List ............................................... 605
   Problems ................................................... 605
8  Electronic States in Semiconductors ........................ 609
   A8.1  Introduction ......................................... 609
   A8.2  General Description of Electronic States ............. 609
   A8.3  Bloch Functions and the Momentum Matrix Element ...... 611
   A8.4  Band Structure in Quantum Wells ...................... 615
         A8.4.1  Conduction Band .............................. 615
         A8.4.2  Valence Band ................................. 616
         A8.4.3  Strained Quantum Wells ....................... 623
   References ................................................. 627
   Reading List ............................................... 628
9  Fermi's Golden Rule ........................................ 629
   A9.1  Introduction ......................................... 629
   A9.2  Semiclassical Derivation of the Transition Rate ...... 630
          A9.2.1  Case I: The Matrix Element-Density of
                  Final States Product is a Constant .......... 632
          A9.2.2  Case II: The Matrix Element-Density of
                  Final States Product is a Delta Function .... 635
          A9.2.3  Case III: The Matrix Element-Density of
                  Final States Product is a Lorentzian ........ 636
   Reading List ............................................... 637
   Problems ................................................... 638
10 Transition Matrix Element .................................. 639
   A10.1 General Derivation ................................... 639
   A10.2 Polarization-Dependent Effects ....................... 641
   A10.3 Inclusion of Envelope Functions in Quantum Wells ..... 645
   Reading List ............................................... 646
11 Strained Bandgaps .......................................... 647
   A11.1 General Definitions of Stress and Strain ............. 647
   A11.2 Relationship Between Strain and Bandgap .............. 650
   A11.3 Relationship Between Strain and Band Structure ....... 655
   References ................................................. 656
12 Threshold Energy for Auger Processes ....................... 657
   A12.1 CCCH Process ......................................... 657
   A12.2 CHHS and CHHL Processes .............................. 659
13 Langevin Noise ............................................. 661
   A13.1  Properties of Langevin Noise Sources ................ 661
          A13.1.1 Correlation Functions and Spectral
                  Densities ................................... 661
          A13.1.2 Evaluation of Langevin Noise Correlation
                  Strengths ................................... 664
   A13.2  Specific Langevin Noise Correlations ................ 665
          A13.2.1 Photon Density and Carrier Density
                  Langevin Noise Correlations ................. 665
          A13.2.2 Photon Density and Output Power Langevin
                  Noise Correlations .......................... 666
          A13.2.3 Photon Density and Phase Langevin Noise
                  Correlations ................................ 667
   A13.3  Evaluation of Noise Spectral Densities .............. 669
          A13.3.1 Photon Noise Spectral Density ............... 669
          A13.3.2 Output Power Noise Spectral Density ......... 670
          A13.3.3 Carrier Noise Spectral Density .............. 671
   References ................................................. 672
   Problems ................................................... 672
14 Derivation Details for Perturbation Formulas ............... 675
   Reading List ............................................... 676
15 Multimode Interference ..................................... 677
   A15.1 Multimode Interference-Based Couplers ................ 677
   A15.2 Guided-Mode Propagation Analysis ..................... 678
         A15.2.1 General Interference ......................... 679
         A15.2.2 Restricted Multimode Interference ............ 681
   A15.3 MMI Physical Properties .............................. 682
         A15.3.1 Fabrication .................................. 682
         A15.3.2 Imaging Quality .............................. 682
         A15.3.3 Inherent Loss and Optical Bandwidth .......... 682
         A15.3.4 Polarization Dependence ...................... 683
         A15.3.5 Reflection Properties ........................ 683
   Reference .................................................. 683
16 The Electro-Optic Effect ................................... 685
   References ................................................. 692
   Reading List ............................................... 692
17 Solution of Finite Difference Problems ..................... 693
   A17.1  Matrix Formalism .................................... 693
   A17.2  One-Dimensional Dielectric Slab Example ............. 695
   Reading List ............................................... 696

Index ......................................................... 697


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:12 2019. Размер: 28,974 bytes.
Посещение N 2070 c 06.11.2012