Preface ..................................................... XI
List of Contributors ...................................... XIII
1 Aspects of Anion Coordination from Historical Perspectives ... 1
Antonio Bianchi, Kristin Bowman-James, and Enrique
García-España
1.1 Introduction ............................................ 1
1.2 Halide and Pseudohalide Anions .......................... 9
1.3 Oxoanions .............................................. 23
1.4 Phosphate and Polyphosphate Anions ..................... 29
1.5 Carboxylate Anions and Amino Acids ..................... 36
1.6 Anionic Complexes: Supercomplex Formation .............. 42
1.7 Nucleotides ............................................ 51
1.8 Final Notes ............................................ 60
References .................................................. 60
2 Thermodynamic Aspects of Anion Coordination ................. 75
Antonio Bianchi and Enrique Garcia-Espana
2.1 Introduction ........................................... 75
2.2 Parameters Determining the Stability of Anion
Complexes .............................................. 76
2.2.1 Type of Binding Group: Noncovalent Forces in
Anion Coordination .............................. 76
2.2.2 Charge of Anions and Receptors .................. 84
2.2.3 Number of Binding Groups ........................ 85
2.2.3.1 Additivity of Noncovalent Forces ....... 86
2.2.4 Preorganization ................................. 87
2.2.4.1 Macrocyclic Effect ..................... 91
2.2.5 Solvent Effects ................................. 93
2.3 Molecular Recognition and Selectivity ................. 102
2.4 Enthalpic and Entropic Contributions in Anion
Coordination .......................................... 110
References ................................................. 132
3 Structural Aspects of Anion Coordination Chemistry ......... 141
Rowshan Ara Begum, Sung Ok Kang, Victor W. Day, and
Kristin Bowman-James
3.1 Introduction .......................................... 141
3.2 Basic Concepts of Anion Coordination Chemistry ........ 142
3.3 Classes of Anion Hosts ................................ 143
3.4 Acycles ............................................... 144
3.4.1 Bidentate ...................................... 144
3.4.2 Tridentate ..................................... 149
3.4.3 Tetradentate ................................... 155
3.4.4 Pentadentate ................................... 161
3.4.5 Hexadentate .................................... 162
3.5 Monocycles ............................................ 164
3.5.1 Bidentate ...................................... 164
3.5.2 Tridentate ..................................... 165
3.5.3 Tetradentate ................................... 166
3.5.4 Pentadentate ................................... 174
3.5.5 Hexadentate .................................... 175
3.5.6 Octadentate .................................... 177
3.5.7 Dodecadentate .................................. 179
3.6 Cryptands ............................................. 181
3.6.1 Bidentate ...................................... 181
3.6.2 Tridentate ..................................... 183
3.6.3 Tetradentate ................................... 184
3.6.4 Pentadentate ................................... 186
3.6.5 Hexadentate .................................... 188
3.6.6 Septadentate ................................... 192
3.6.7 Octadentate .................................... 193
3.6.8 Nonadentate .................................... 197
3.6.9 Decadentate .................................... 198
3.6.10 Dodecadentate .................................. 199
3.7 Transition-Metal-Assisted Ligands ..................... 201
3.7.1 Bidentate ...................................... 201
3.7.2 Tridentate ..................................... 203
3.7.3 Tetradentate ................................... 204
3.7.4 Hexadentate .................................... 204
3.7.5 Septadentate ................................... 206
3.7.6 Dodecadentate .................................. 208
3.8 Lewis Acid Ligands .................................... 210
3.8.1 Transition Metal Cascade Complexes ............. 210
3.8.2 Other Lewis Acid Donor Ligands ................. 213
3.8.2.1 Boron-Based Ligands ................... 213
3.8.2.2 Tin-Based Ligands ..................... 214
3.8.2.3 Hg-Based Ligands ...................... 216
3.9 Conclusion ............................................ 218
Acknowledgments ............................................ 218
References ................................................. 218
4 Synthetic Strategies ....................................... 227
Andrea Bencini and José M. Llinares
4.1 Introduction .......................................... 227
4.2 Design and Synthesis of Polyamine-Based Receptors
for Anions ............................................ 227
4.2.1 Acyclic Polyamine Receptors .................... 229
4.2.2 Tripodal Polyamine Receptors ................... 234
4.2.3 Macrocyclic Polyamine Receptors with
Aliphatic Skeletons ............................ 236
4.2.4 Macrocyclic Receptors Incorporating a Single
Aromatic Unit .................................. 241
4.2.5 Macrocyclic Receptors Incorporating Two
Aromatic Units ................................. 243
4.2.6 Anion Receptors Containing Separated
Macrocyclic Binding Units ...................... 249
4.2.7 Cryptands ...................................... 252
4.3 Design and Synthesis of Amide Receptors ............... 258
4.3.1 Acid Halides as Starting Materials ............. 259
4.3.1.1 Acyclic Amide Receptors ............... 259
4.3.1.2 Macrocyclic Amide Receptors ........... 267
4.3.2 Esters as Starting Materials ................... 270
4.3.3 Using Coupling Reagents ........................ 276
References ................................................. 279
5 Template Synthesis ......................................... 289
Jack K. Clegg and Leonard F. Lindoy
5.1 Introductory Remarks .................................. 289
5.2 Macrocyclic Systems ................................... 290
5.3 Bowl-Shaped Systems ................................... 297
5.4 Capsule, Cage, and Tube-Shaped Systems ................ 300
5.5 Circular Helicates and meso-Helicates ................. 306
5.6 Mechanically Linked Systems ........................... 308
5.7 Concluding Remarks .................................... 314
References ................................................. 315
6 Anion-π: Interactions in Molecular Recognition ............. 321
David Quiñonero, Antonio Frontera, and Pere M. Deyd
6.1 Introduction .......................................... 321
6.2 Physical Nature of the Interaction .................... 322
6.3 Energetic and Geometric Features of the Interaction
Depending on the Host (Aromatic Moieties) and the
Guest (Anions) ........................................ 323
6.4 Influence of Other Noncovalent Interactions on the
Anion-π-Interaction ................................... 330
6.4.1 Interplay between Cation-π and Anion-π
Interactions ................................... 330
6.4.2 Interplay between π—π and Anion-π-
Interactions ................................... 332
6.4.3 Interplay between Anion-π and Hydrogen-
Bonding Interactions ........................... 334
6.4.4 Influence of Metal Coordination on the
Anion-π Interaction ............................ 337
6.5 Experimental Examples of Anion-π Interactions in
the Solid State and in Solution ....................... 338
6.6 Concluding Remarks .................................... 353
References ................................................. 354
7 Receptors for Biologically Relevant Anions ................. 363
Stefan Kubik
7.1 Introduction .......................................... 363
7.2 Phosphate Receptors ................................... 364
7.2.1 Introduction ................................... 364
7.2.2 Phosphate, Pyrophosphate, Triphosphate ......... 366
7.2.3 Nucleotides .................................... 387
7.2.4 Phosphate Esters ............................... 395
7.2.5 Polynucleotides ................................ 407
7.3 Carboxylate Receptors ................................. 410
7.3.1 Introduction ................................... 410
7.3.2 Acetate ........................................ 412
7.3.3 Di- and Tricarboxylates ........................ 425
7.3.4 Amino Acids .................................... 433
7.3.5 Peptide C-Terminal Carboxylates ................ 444
7.3.6 Peptide Side-Chain Carboxylates ................ 450
7.3.7 Sialic Acids ................................... 451
7.4 Conclusion ............................................ 453
References ................................................. 453
8 Synthetic Amphiphilic Peptides that Self-Assemble to
Membrane-Active Anion Transporters ......................... 465
George N. Gokel and Megan M. Daschbach
8.1 Introduction and Background ........................... 465
8.2 Biomedical Importance of Chloride Channels ............ 466
8.2.1 A Natural Chloride Complexing Agent ............ 468
8.3 The Development of Synthetic Chloride Channels ........ 468
8.3.1 Cations, Anions, Complexation, and Transport ... 468
8.3.2 Anion Complexation Studies ..................... 470
8.3.3 Transport of Ions .............................. 470
8.3.4 Synthetic Chloride Transporters ................ 470
8.4 Approaches to Synthetic Chloride Channels ............. 471
8.4.1 Tomich's Semisynthetic Peptides ................ 472
8.4.2 Cyclodextrin as a Synthetic Channel Design
Element ........................................ 473
8.4.3 Azobenzene as a Photo-Switchable Gate .......... 474
8.4.4 Calixarene-Derived Chloride Transporters ....... 474
8.4.5 Oligophenylenes and π-Slides ................... 477
8.4.6 Cholapods as Ion Transporters .................. 479
8.4.7 Transport Mediated by Isophthalamides and
Dipicolinamides ................................ 481
8.5 The Development of Amphiphilic Peptides as Anion
Channels .............................................. 481
8.5.1 The Bilayer Membrane ........................... 482
8.5.2 Initial Design Criteria for Synthetic Anion
Transporters (SATs) ............................ 482
8.5.3 Synthesis of the N-Terminal Anchor Module ...... 483
8.5.4 Preparation of the Heptapeptide ................ 484
8.5.5 Initial Assessment of Ion Transport ............ 485
8.6 Structural Variations in the SAT Modular Elements ..... 488
8.6.1 Variations in the N-Terminal Anchor Chains ..... 488
8.6.2 Anchoring Effect of the C-Terminal Residue ..... 489
8.6.3 Studies of Variations in the Peptide Module .... 491
8.6.3.1 Structural Variations in the
Heptapeptide .......................... 492
8.6.3.2 Variations in the Gly-Pro Peptide
Length and Sequence ................... 493
8.6.4 Variations in the Anchor Chain to Peptide
Linker Module .................................. 494
8.6.5 Covalent Linkage of SATs: Pseudo-Dimers ........ 496
8.6.6 Chloride Binding by the Amphiphilic
Heptapeptides .................................. 498
8.6.7 The Effect on Transport of Charged
Sidechains ..................................... 499
8.6.8 Fluorescent Probes of SAT Structure and
Function ....................................... 500
8.6.8.1 Aggregation in Aqueous Suspension
and in the Bilayer .................... 501
8.6.8.2 Fluorescence Resonance Energy
Transfer Studies ...................... 503
8.6.8.3 Insertion of SATs into the Bilayer .... 504
8.6.8.4 Position of SATs in the Bilayer ....... 505
8.6.9 Self-Assembly Studies of the Amphiphiles ....... 505
8.6.10 The Biological Activity of Amphiphilic
Peptides ....................................... 508
8.6.11 Nontransporter, Membrane-Active Compounds ...... 509
8.7 Conclusions ........................................... 509
Acknowledgments ............................................ 509
References ................................................. 510
9 Anion Sensing by Fluorescence Quenching or Revival ......... 521
Valeria Amendola, Luigi Fabbrizzi, Maurizio Licchelli,
and Angelo Taglietti
9.1 Introduction .......................................... 521
9.2 Anion Recognition by Dynamic and Static Quenching of
Fluorescence .......................................... 522
9.3 Fluorescent Sensors Based on Anthracene and on a
Polyamine Framework ................................... 529
9.4 Turning on Fluorescence with the Indicator
Displacement Approach ................................. 538
9.4.1 Epilog ......................................... 550
References ................................................. 551
Index ...................................................... 553
|