PART I. MATHEMATICAL LOGIC, 1900-1935
Introduction ................................................. 2
1 The Development of Mathematical Logic from Russell to
Tarski, 1900-1935 (with Richard Zach and Calixto Badesa) ..... 5
PART II. FOUNDATIONS OF MATHEMATICS
Introduction ............................................... 122
2 Hilbert and Bernays on Metamathematics ..................... 125
Addendum ................................................... 155
3 Between Russell and Hilbert: Behmann on the Foundations
of Mathematics ............................................. 159
4 The Russellian Influence on Hilbert and His School ......... 176
5 On the Constructivity of Proofs: A Debate among Behmann,
Bernays, Gödel, and Kaufmann ............................... 199
6 Wittgenstein's Constructivization of Euler's Proof of the
Infinity of Primes (with Mathieu Marion) ................... 217
7 Between Vienna and Berlin: The Immediate Reception of
Gödel's Incompleteness Theorems ............................ 232
8 Review of Gödel's Collected Works, Vols. IV and V .......... 240
PART III. PHENOMENOLOGY AND THE EXACT SCIENCES
Introduction ............................................... 256
9 Hermann Weyl: Predicativity and an Intuitionistic
Excursion .................................................. 259
10 Mathematics and Phenomenology: The Correspondence between
O. Becker and H. Weyl (with T. Ryckman) .................... 277
11 Geometry, Physics, and Phenomenology: Four Letters of
O. Becker to H. Weyl (with T. Ryckman) ..................... 308
12 "Das Abenteuer der Vernunft": O. Becker and D. Mahnke
on the Phenomenological Foundations of the Exact
Sciences ................................................... 346
PART IV. TARSKI AND QUINE ON NOMINALISM
Introduction ............................................... 358
13 Harvard 1940-1941: Tarski, Carnap, and Quine on a
Finitistic Language of Mathematics for Science ............. 361
14 Quine and Tarski on Nominalism ............................. 387
PART V. TARSKI AND THE VIENNA CIRCLE ON TRUTH AND LOGICAL
CONSEQUENCE
Introduction ............................................... 412
15 Tarski, Neurath, and Kokoszyńska on the Semantic
Conception of Truth ........................................ 415
16 Tarski on Models and Logical Consequence ................... 440
Addendum ................................................... 463
17 Tarski on Categoricity and Completeness: An Unpublished
Lecture from 1940 .......................................... 469
18 Appendix: "On the Completeness and Categoricity of
Deductive Systems" (1940) .................................. 485
Notes ......................................................... 493
Bibliography .................................................. 571
Index ......................................................... 611
|