Introduction to the Tenth Anniversary Edition ................ xvii
Afterword to the Tenth Anniversary Edition .................... xix
Preface ....................................................... xxi
Acknowledgements ............................................ xxvii
Nomenclature and notation .................................... xxix
Part I Fundamental concepts .................................... 1
1 Introduction and overview ..................................... 1
1.1 Global perspectives ..................................... 1
1.1.1 History of quantum computation and quantum
information ...................................... 2
1.1.2 Future directions ............................... 12
1.2 Quantum bits ........................................... 13
1.2.1 Multiple qubits ................................. 16
1.3 Quantum computation .................................... 17
1.3.1 Single qubit gates .............................. 17
1.3.2 Multiple qubit gates ............................ 20
1.3.3 Measurements in bases other than the
computational basis ............................. 22
1.3.4 Quantum circuits ................................ 22
1.3.5 Qubit copying circuit? .......................... 24
1.3.6 Example: Bell states ............................ 25
1.3.7 Example: quantum teleportation .................. 26
1.4 Quantum algorithms ..................................... 28
1.4.1 Classical computations on a quantum computer .... 29
1.4.2 Quantum parallelism ............................. 30
1.4.3 Deutsch's algorithm ............................. 32
1.4.4 The Deutsch-Jozsa algorithm ..................... 34
1.4.5 Quantum algorithms summarized ................... 36
1.5 Experimental quantum information processing ............ 42
1.5.1 The Stern-Gerlach experiment .................... 43
1.5.2 Prospects for practical quantum information
processing ...................................... 46
1.6 Quantum information .................................... 50
1.6.1 Quantum information theory: example problems .... 52
1.6.2 Quantum information in a wider context .......... 58
2 Introduction to quantum mechanics ........................... 60
2.1 Linear algebra ......................................... 61
2.1.1 Bases and linear independence ................... 62
2.1.2 Linear operators and matrices ................... 63
2.1.3 The Pauli matrices .............................. 65
2.1.4 Inner products .................................. 65
2.1.5 Eigenvectors and eigenvalues .................... 68
2.1.6 Adjoints and Hermitian operators ................ 69
2.1.7 Tensor products ................................. 71
2.1.8 Operatorfunctions ............................... 75
2.1.9 The commutator and anti-commutator .............. 76
2.1.10 The polar and singular value decompositions ..... 78
2.2 The postulates of quantum mechanics .................... 80
2.2.1 State space ..................................... 80
2.2.2 Evolution ....................................... 81
2.2.3 Quantum measurement ............................. 84
2.2.4 Distinguishing quantum states ................... 86
2.2.5 Projective measurements ......................... 87
2.2.6 POVM measurements ............................... 90
2.2.7 Phase ........................................... 93
2.2.8 Composite systems ............................... 93
2.2.9 Quantum mechanics: a global view ................ 96
2.3 Application: super dense coding ........................ 97
2.4 The density operator ................................... 98
2.4.1 Ensembles of quantum states ..................... 99
2.4.2 General properties of the density operator ..... 101
2.4.3 The reduced density operator ................... 105
2.5 The Schmidt decomposition and purifications ........... 109
2.6 EPR and the Bell inequality ........................... 111
3 Introduction to computer science ........................... 120
3.1 Models for computation ................................ 122
3.1.1 Turing machines ................................ 122
3.1.2 Circuits ....................................... 129
3.2 The analysis of computational problems ................ 135
3.2.1 How to quantify computational resources ........ 136
3.2.2 Computational complexity ....................... 138
3.2.3 Decision problems and the complexity classes
P and NP ....................................... 141
3.2.4 A plethora of complexity classes ............... 150
3.2.5 Energy and computation ......................... 153
3.3 Perspectives on computer science ...................... 161
Part II Quantum computation ................................... 171
4 Quantum circuits ........................................... 171
4.1 Quantum algorithms .................................... 172
4.2 Single qubit operations ............................... 174
4.3 Controlled operations ................................. 177
4.4 Measurement ........................................... 185
4.5 Universal quantum gates ............................... 188
4.5.1 Two-level unitary gates are universal .......... 189
4.5.2 Single qubit and CNOT gates are universal ...... 191
4.5.3 A discrete set of universal operations ......... 194
4.5.4 Approximating arbitrary unitary gates is
generically hard ............................... 198
4.5.5 Quantum computational complexity ............... 200
4.6 Summary of the quantum circuit model of computation ... 202
4.7 Simulation of quantum systems ......................... 204
4.7.1 Simulation in action ........................... 204
4.7.2 The quantum simulation algorithm ............... 206
4.7.3 An illustrative example ........................ 209
4.7.4 Perspectives on quantum simulation ............. 211
5 The quantum Fourier transform and its applications ......... 216
5.1 The quantum Fourier transform ......................... 217
5.2 Phase estimation ...................................... 221
5.2.1 Performance and requirements .................... 223
5.3 Applications: order-finding and factoring ............. 226
5.3.1 Application: order-finding ..................... 226
5.3.2 Application: factoring ......................... 232
5.4 General applications of the quantum Fourier
transform ............................................. 234
5.4.1 Period-finding ................................. 236
5.4.2 Discrete logarithms ............................ 238
5.4.3 The hidden subgroup problem .................... 240
5.4.4 Other quantum algorithms? ...................... 242
6 Quantum search algorithms .................................. 248
6.1 The quantum search algorithm .......................... 248
6.1.1 The oracle ..................................... 248
6.1.2 The procedure .................................. 250
6.1.3 Geometric visualization ........................ 252
6.1.4 Performance .................................... 253
6.2 Quantum search as a quantum simulation ................ 255
6.3 Quantum counting ...................................... 261
6.4 Speeding up the solution of NP-complete problems ...... 263
6.5 Quantum search of an unstructured database ............ 265
6.6 Optimality of the search algorithm .................... 269
6.7 Black box algorithm limits ............................ 271
7 Quantum computers: physical realization .................... 277
7.1 Guiding principles .................................... 277
7.2 Conditions for quantum computation .................... 279
7.2.1 Representation of quantum information .......... 279
7.2.2 Performance of unitary transformations ......... 281
7.2.3 Preparation of fiducial initial states ......... 281
7.2.4 Measurement of output result ................... 282
7.3 Harmonic oscillator quantum computer .................. 283
7.3.1 Physical apparatus ............................. 283
7.3.2 The Hamiltonian ................................ 284
7.3.3 Quantum computation ............................ 286
7.3.4 Drawbacks ...................................... 286
7.4 Optical photon quantum computer ....................... 287
7.4.1 Physical apparatus ............................. 287
7.4.2 Quantum computation ............................ 290
7.4.3 Drawbacks ...................................... 296
7.5 Optical cavity quantum electrodynamics ................ 297
7.5.1 Physical apparatus ............................. 298
7.5.2 The Hamiltonian ................................ 300
7.5.3 Single-photon single-atom absorption and
refraction ..................................... 303
7.5.4 Quantum computation ............................ 306
7.6 Ion traps ............................................. 309
7.6.1 Physical apparatus ............................. 309
7.6.2 The Hamiltonian ................................ 317
7.6.3 Quantum computation ............................ 319
7.6.4 Experiment ..................................... 321
7.7 Nuclear magnetic resonance ............................ 324
7.7.1 Physical apparatus ............................. 325
7.7.2 The Hamiltonian ................................ 326
7.7.3 Quantum computation ............................ 331
7.7.4 Experiment ..................................... 336
7.8 Other implementation schemes .......................... 343
Part III Quantum information .................................. 353
8 Quantum noise and quantum operations ....................... 353
8.1 Classical noise and Markov processes .................. 354
8.2 Quantum operations .................................... 356
8.2.1 Overview ....................................... 356
8.2.2 Environments and quantum operations ............ 357
8.2.3 Operator-sum representation .................... 360
8.2.4 Axiomatic approach to quantum operations ....... 366
8.3 Examples of quantum noise and quantum operations ...... 373
8.3.1 Trace and partial trace ........................ 374
8.3.2 Geometric picture of single qubit quantum
operations ..................................... 374
8.3.3 Bit flip and phase flip channels ............... 376
8.3.4 Depolarizing channel ........................... 378
8.3.5 Amplitude damping .............................. 380
8.3.6 Phase damping .................................. 383
8.4 Applications of quantum operations .................... 386
8.4.1 Master equations ............................... 386
8.4.2 Quantum process tomography ..................... 389
8.5 Limitations of the quantum operations formalism ....... 394
9 Distance measures for quantum information ................... 399
9.1 Distance measures for classical information ........... 399
9.2 How close are two quantum states? ..................... 403
9.2.1 Trace distance ................................. 403
9.2.2 Fidelity ....................................... 409
9.2.3 Relationships between distance measures ........ 415
9.3 How well does a quantum channel preserve
information? .......................................... 416
10 Quantum error-correction ................................... 425
10.1 Introduction .......................................... 426
10.1.1 The three qubit bit flip code .................. 427
10.1.2 Three qubit phase flip code .................... 430
10.2 The Shor code ......................................... 432
10.3 Theory of quantum error-correction .................... 435
10.3.1 Discretization of the errors ................... 438
10.3.2 Independent error models ....................... 441
10.3.3 Degenerate codes ............................... 444
10.3.4 The quantum Hamming bound ...................... 444
10.4 Constructing quantum codes ............................ 445
10.4.1 Classical linear codes ......................... 445
10.4.2 Calderbank-Shor-Steane codes ................... 450
10.5 Stabilizer codes ...................................... 453
10.5.1 The stabilizer formalism ....................... 454
10.5.2 Unitary gates and the stabilizer formalism ..... 459
10.5.3 Measurement in the stabilizer formalism ........ 463
10.5.4 The Gottesman-Knill theorem .................... 464
10.5.5 Stabilizer code constructions .................. 464
10.5.6 Examples ....................................... 467
10.5.7 Standard form for a stabilizer code ............ 470
10.5.8 Quantum circuits for encoding, decoding, and
correction ..................................... 472
10.6 Fault-tolerant quantum computation .................... 474
10.6.1 Fault-tolerance: the big picture ............... 475
10.6.2 Fault-tolerant quantum logic ................... 482
10.6.3 Fault-tolerant measurement ..................... 489
10.6.4 Elements of resilient quantum computation ...... 493
11 Entropy and information .................................... 500
11.1 Shannon entropy ....................................... 500
11.2 Basic properties of entropy ........................... 502
11.2.1 The binary entropy ............................. 502
11.2.2 The relative entropy ........................... 504
11.2.3 Conditional entropy and mutual information ..... 505
11.2.4 The data processing inequality ................. 509
11.3 Von Neumann entropy ................................... 510
11.3.1 Quantum relative entropy ....................... 511
11.3.2 Basic properties of entropy .................... 513
11.3.3 Measurements and entropy ....................... 514
11.3.4 Subadditivity .................................. 515
11.3.5 Concavity of the entropy ....................... 516
11.3.6 The entropy of a mixture of quantum states ..... 518
11.4 Strong subadditivity .................................. 519
11.4.1 Proof of strong subadditivity .................. 519
11.4.2 Strong subadditivity: elementary
applications ................................... 522
12 Quantum information theory ................................. 528
12.1 Distinguishing quantum states and the accessible
information ........................................... 529
12.1.1 The Holevo bound ............................... 531
12.1.2 Example applications of the Holevo bound ....... 534
12.2 Data compression ..................................... 536
12.2.1 Shannon's noiseless channel coding theorem ..... 537
12.2.2 Schumacher's quantum noiseless channel coding
theorem ........................................ 542
12.3 Classical information over noisy quantum channels ..... 546
12.3.1 Communication over noisy classical channels .... 548
12.3.2 Communication over noisy quantum channels ...... 554
12.4 Quantum information over noisy quantum channels ....... 561
12.4.1 Entropy exchange and the quantum Fano
inequality ..................................... 561
12.4.2 The quantum data processing inequality ......... 564
12.4.3 Quantum Singleton bound ........................ 568
12.4.4 Quantum error-correction, refrigeration and
Maxwell's demon ................................ 569
12.5 Entanglement as a physical resource ................... 571
12.5.1 Transforming bi-partite pure state
entanglement ................................... 573
12.5.2 Entanglement distillation and dilution ......... 578
12.5.3 Entanglement distillation and quantum
error-correction ............................... 580
12.6 Quantum cryptography ................................. 582
12.6.1 Private key cryptography ....................... 582
12.6.2 Privacy amplification and information
reconciliation ................................. 584
12.6.3 Quantum key distribution ....................... 586
12.6.4 Privacy and coherent information ............... 592
12.6.5 The security of quantum key distribution ....... 593
Appendices .................................................... 608
Appendix 1: Notes on basic probability theory .............. 608
Appendix 2: Group theory ................................... 610
A2.1 Basic definitions .................................. 610
A2.1.1 Generators .................................. 611
A2.1.2 Cyclic groups ............................... 611
A2.1.3 Cosets ...................................... 612
A2.2 Representations .................................... 612
A2.2.1 Equivalence and reducibility ................ 612
A2.2.2 Orthogonality ............................... 613
A2.2.3 The regular representation .................. 614
A2.3 Fourier transforms ................................. 615
Appendix 3: The Solovay—Kitaev theorem ..................... 617
Appendix 4: Number theory .................................. 625
A4.1 Fundamentals ....................................... 625
A4.2 Modular arithmetic and Euclid's algorithm .......... 626
A4.3 Reduction of factoring to order-finding ............ 633
A4.4 Continued fractions ................................ 635
Appendix 5: Public key cryptography and the RSA
cryptosystem ............................................ 640
Appendix 6: Proof of Lieb's theorem ........................ 645
Bibliography .................................................. 649
Index ......................................................... 665
|