Nielsen M.A. Quantum computation and quantum information (Cambridge, 2010 (2012)). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаNielsen M.A. Quantum computation and quantum information / M.A.Nielsen, I.L.Chuang. - 10th anniversary ed. - Cambridge: Cambridge University Press, 2010 (2012). - xxxi, 676 p.: ill. - Bibliogr.: p. 649-664. - Ind.: p.665-676. - ISBN 978-1-10700-217-3
 

Оглавление / Contents
 
Introduction to the Tenth Anniversary Edition ................ xvii
Afterword to the Tenth Anniversary Edition .................... xix
Preface ....................................................... xxi
Acknowledgements ............................................ xxvii
Nomenclature and notation .................................... xxix

Part I  Fundamental concepts .................................... 1

1 Introduction and overview ..................................... 1
   1.1  Global perspectives ..................................... 1
        1.1.1  History of quantum computation and quantum
               information ...................................... 2
        1.1.2  Future directions ............................... 12
   1.2  Quantum bits ........................................... 13
        1.2.1  Multiple qubits ................................. 16
   1.3  Quantum computation .................................... 17
        1.3.1  Single qubit gates .............................. 17
        1.3.2  Multiple qubit gates ............................ 20
        1.3.3  Measurements in bases other than the
               computational basis ............................. 22
        1.3.4  Quantum circuits ................................ 22
        1.3.5  Qubit copying circuit? .......................... 24
        1.3.6  Example: Bell states ............................ 25
        1.3.7  Example: quantum teleportation .................. 26
   1.4  Quantum algorithms ..................................... 28
        1.4.1  Classical computations on a quantum computer .... 29
        1.4.2  Quantum parallelism ............................. 30
        1.4.3  Deutsch's algorithm ............................. 32
        1.4.4  The Deutsch-Jozsa algorithm ..................... 34
        1.4.5  Quantum algorithms summarized ................... 36
   1.5  Experimental quantum information processing ............ 42
        1.5.1  The Stern-Gerlach experiment .................... 43
        1.5.2  Prospects for practical quantum information
               processing ...................................... 46
   1.6  Quantum information .................................... 50
        1.6.1  Quantum information theory: example problems .... 52
        1.6.2  Quantum information in a wider context .......... 58
2  Introduction to quantum mechanics ........................... 60
   2.1  Linear algebra ......................................... 61
        2.1.1  Bases and linear independence ................... 62
        2.1.2  Linear operators and matrices ................... 63
        2.1.3  The Pauli matrices .............................. 65
        2.1.4  Inner products .................................. 65
        2.1.5  Eigenvectors and eigenvalues .................... 68
        2.1.6  Adjoints and Hermitian operators ................ 69
        2.1.7  Tensor products ................................. 71
        2.1.8  Operatorfunctions ............................... 75
        2.1.9  The commutator and anti-commutator .............. 76
        2.1.10 The polar and singular value decompositions ..... 78
   2.2  The postulates of quantum mechanics .................... 80
        2.2.1  State space ..................................... 80
        2.2.2  Evolution ....................................... 81
        2.2.3  Quantum measurement ............................. 84
        2.2.4  Distinguishing quantum states ................... 86
        2.2.5  Projective measurements ......................... 87
        2.2.6  POVM measurements ............................... 90
        2.2.7  Phase ........................................... 93
        2.2.8  Composite systems ............................... 93
        2.2.9  Quantum mechanics: a global view ................ 96
   2.3  Application: super dense coding ........................ 97
   2.4  The density operator ................................... 98
        2.4.1  Ensembles of quantum states ..................... 99
        2.4.2  General properties of the density operator ..... 101
        2.4.3  The reduced density operator ................... 105
   2.5  The Schmidt decomposition and purifications ........... 109
   2.6  EPR and the Bell inequality ........................... 111
3  Introduction to computer science ........................... 120
   3.1  Models for computation ................................ 122
        3.1.1  Turing machines ................................ 122
        3.1.2  Circuits ....................................... 129
   3.2  The analysis of computational problems ................ 135
        3.2.1  How to quantify computational resources ........ 136
        3.2.2  Computational complexity ....................... 138
        3.2.3  Decision problems and the complexity classes
               P and NP ....................................... 141
        3.2.4  A plethora of complexity classes ............... 150
        3.2.5  Energy and computation ......................... 153
   3.3  Perspectives on computer science ...................... 161

Part II Quantum computation ................................... 171

4  Quantum circuits ........................................... 171
   4.1  Quantum algorithms .................................... 172
   4.2  Single qubit operations ............................... 174
   4.3  Controlled operations ................................. 177
   4.4  Measurement ........................................... 185
   4.5  Universal quantum gates ............................... 188
        4.5.1  Two-level unitary gates are universal .......... 189
        4.5.2  Single qubit and CNOT gates are universal ...... 191
        4.5.3  A discrete set of universal operations ......... 194
        4.5.4  Approximating arbitrary unitary gates is
               generically hard ............................... 198
        4.5.5  Quantum computational complexity ............... 200
   4.6  Summary of the quantum circuit model of computation ... 202
   4.7  Simulation of quantum systems ......................... 204
        4.7.1  Simulation in action ........................... 204
        4.7.2  The quantum simulation algorithm ............... 206
        4.7.3  An illustrative example ........................ 209
        4.7.4  Perspectives on quantum simulation ............. 211
5  The quantum Fourier transform and its applications ......... 216
   5.1  The quantum Fourier transform ......................... 217
   5.2  Phase estimation ...................................... 221
        5.2.1 Performance and requirements .................... 223
   5.3  Applications: order-finding and factoring ............. 226
        5.3.1  Application: order-finding ..................... 226
        5.3.2  Application: factoring ......................... 232
   5.4  General applications of the quantum Fourier
        transform ............................................. 234
        5.4.1  Period-finding ................................. 236
        5.4.2  Discrete logarithms ............................ 238
        5.4.3  The hidden subgroup problem .................... 240
        5.4.4  Other quantum algorithms? ...................... 242
6  Quantum search algorithms .................................. 248
   6.1  The quantum search algorithm .......................... 248
        6.1.1  The oracle ..................................... 248
        6.1.2  The procedure .................................. 250
        6.1.3  Geometric visualization ........................ 252
        6.1.4  Performance .................................... 253
   6.2  Quantum search as a quantum simulation ................ 255
   6.3  Quantum counting ...................................... 261
   6.4  Speeding up the solution of NP-complete problems ...... 263
   6.5  Quantum search of an unstructured database ............ 265
   6.6  Optimality of the search algorithm .................... 269
   6.7  Black box algorithm limits ............................ 271
7  Quantum computers: physical realization .................... 277
   7.1  Guiding principles .................................... 277
   7.2  Conditions for quantum computation .................... 279
        7.2.1  Representation of quantum information .......... 279
        7.2.2  Performance of unitary transformations ......... 281
        7.2.3  Preparation of fiducial initial states ......... 281
        7.2.4  Measurement of output result ................... 282
   7.3  Harmonic oscillator quantum computer .................. 283
        7.3.1  Physical apparatus ............................. 283
        7.3.2  The Hamiltonian ................................ 284
        7.3.3  Quantum computation ............................ 286
        7.3.4  Drawbacks ...................................... 286
   7.4  Optical photon quantum computer ....................... 287
        7.4.1  Physical apparatus ............................. 287
        7.4.2  Quantum computation ............................ 290
        7.4.3  Drawbacks ...................................... 296
   7.5  Optical cavity quantum electrodynamics ................ 297
        7.5.1  Physical apparatus ............................. 298
        7.5.2  The Hamiltonian ................................ 300
        7.5.3  Single-photon single-atom absorption and
               refraction ..................................... 303
        7.5.4  Quantum computation ............................ 306
   7.6  Ion traps ............................................. 309
        7.6.1  Physical apparatus ............................. 309
        7.6.2  The Hamiltonian ................................ 317
        7.6.3  Quantum computation ............................ 319
        7.6.4  Experiment ..................................... 321
   7.7  Nuclear magnetic resonance ............................ 324
        7.7.1  Physical apparatus ............................. 325
        7.7.2  The Hamiltonian ................................ 326
        7.7.3  Quantum computation ............................ 331
        7.7.4  Experiment ..................................... 336
   7.8  Other implementation schemes .......................... 343

Part III Quantum information .................................. 353

8  Quantum noise and quantum operations ....................... 353
   8.1  Classical noise and Markov processes .................. 354
   8.2  Quantum operations .................................... 356
        8.2.1  Overview ....................................... 356
        8.2.2  Environments and quantum operations ............ 357
        8.2.3  Operator-sum representation .................... 360
        8.2.4  Axiomatic approach to quantum operations ....... 366
   8.3  Examples of quantum noise and quantum operations ...... 373
        8.3.1  Trace and partial trace ........................ 374
        8.3.2  Geometric picture of single qubit quantum
               operations ..................................... 374
        8.3.3  Bit flip and phase flip channels ............... 376
        8.3.4  Depolarizing channel ........................... 378
        8.3.5  Amplitude damping .............................. 380
        8.3.6  Phase damping .................................. 383
   8.4  Applications of quantum operations .................... 386
        8.4.1  Master equations ............................... 386
        8.4.2  Quantum process tomography ..................... 389
   8.5  Limitations of the quantum operations formalism ....... 394
9 Distance measures for quantum information ................... 399
   9.1  Distance measures for classical information ........... 399
   9.2  How close are two quantum states? ..................... 403
        9.2.1  Trace distance ................................. 403
        9.2.2  Fidelity ....................................... 409
        9.2.3  Relationships between distance measures ........ 415
   9.3  How well does a quantum channel preserve
        information? .......................................... 416
10 Quantum error-correction ................................... 425
   10.1 Introduction .......................................... 426
        10.1.1 The three qubit bit flip code .................. 427
        10.1.2 Three qubit phase flip code .................... 430
   10.2 The Shor code ......................................... 432
   10.3 Theory of quantum error-correction .................... 435
        10.3.1 Discretization of the errors ................... 438
        10.3.2 Independent error models ....................... 441
        10.3.3 Degenerate codes ............................... 444
        10.3.4 The quantum Hamming bound ...................... 444
   10.4 Constructing quantum codes ............................ 445
        10.4.1 Classical linear codes ......................... 445
        10.4.2 Calderbank-Shor-Steane codes ................... 450
   10.5 Stabilizer codes ...................................... 453
        10.5.1 The stabilizer formalism ....................... 454
        10.5.2 Unitary gates and the stabilizer formalism ..... 459
        10.5.3 Measurement in the stabilizer formalism ........ 463
        10.5.4 The Gottesman-Knill theorem .................... 464
        10.5.5 Stabilizer code constructions .................. 464
        10.5.6 Examples ....................................... 467
        10.5.7 Standard form for a stabilizer code ............ 470
        10.5.8 Quantum circuits for encoding, decoding, and
               correction ..................................... 472
   10.6 Fault-tolerant quantum computation .................... 474
        10.6.1 Fault-tolerance: the big picture ............... 475
        10.6.2 Fault-tolerant quantum logic ................... 482
        10.6.3 Fault-tolerant measurement ..................... 489
        10.6.4 Elements of resilient quantum computation ...... 493
11 Entropy and information .................................... 500
   11.1 Shannon entropy ....................................... 500
   11.2 Basic properties of entropy ........................... 502
        11.2.1 The binary entropy ............................. 502
        11.2.2 The relative entropy ........................... 504
        11.2.3 Conditional entropy and mutual information ..... 505
        11.2.4 The data processing inequality ................. 509
   11.3 Von Neumann entropy ................................... 510
        11.3.1 Quantum relative entropy ....................... 511
        11.3.2 Basic properties of entropy .................... 513
        11.3.3 Measurements and entropy ....................... 514
        11.3.4 Subadditivity .................................. 515
        11.3.5 Concavity of the entropy ....................... 516
        11.3.6 The entropy of a mixture of quantum states ..... 518
   11.4 Strong subadditivity .................................. 519
        11.4.1 Proof of strong subadditivity .................. 519
        11.4.2 Strong subadditivity: elementary
               applications ................................... 522
12 Quantum information theory ................................. 528
   12.1 Distinguishing quantum states and the accessible
        information ........................................... 529
        12.1.1 The Holevo bound ............................... 531
        12.1.2 Example applications of the Holevo bound ....... 534
   12.2  Data compression ..................................... 536
        12.2.1 Shannon's noiseless channel coding theorem ..... 537
        12.2.2 Schumacher's quantum noiseless channel coding
               theorem ........................................ 542
   12.3 Classical information over noisy quantum channels ..... 546
        12.3.1 Communication over noisy classical channels .... 548
        12.3.2 Communication over noisy quantum channels ...... 554
   12.4 Quantum information over noisy quantum channels ....... 561
        12.4.1 Entropy exchange and the quantum Fano
               inequality ..................................... 561
        12.4.2 The quantum data processing inequality ......... 564
        12.4.3 Quantum Singleton bound ........................ 568
        12.4.4 Quantum error-correction, refrigeration and
               Maxwell's demon ................................ 569
   12.5 Entanglement as a physical resource ................... 571
        12.5.1 Transforming bi-partite pure state
               entanglement ................................... 573
        12.5.2 Entanglement distillation and dilution ......... 578
        12.5.3 Entanglement distillation and quantum
               error-correction ............................... 580
   12.6  Quantum cryptography ................................. 582
        12.6.1 Private key cryptography ....................... 582
        12.6.2 Privacy amplification and information
               reconciliation ................................. 584
        12.6.3 Quantum key distribution ....................... 586
        12.6.4 Privacy and coherent information ............... 592
        12.6.5 The security of quantum key distribution ....... 593

Appendices .................................................... 608
   Appendix 1: Notes on basic probability theory .............. 608
   Appendix 2: Group theory ................................... 610
      A2.1 Basic definitions .................................. 610
           A2.1.1 Generators .................................. 611
           A2.1.2 Cyclic groups ............................... 611
           A2.1.3 Cosets ...................................... 612
      A2.2 Representations .................................... 612
           A2.2.1 Equivalence and reducibility ................ 612
           A2.2.2 Orthogonality ............................... 613
           A2.2.3 The regular representation .................. 614
      A2.3 Fourier transforms ................................. 615
   Appendix 3: The Solovay—Kitaev theorem ..................... 617
   Appendix 4: Number theory .................................. 625
      A4.1 Fundamentals ....................................... 625
      A4.2 Modular arithmetic and Euclid's algorithm .......... 626
      A4.3 Reduction of factoring to order-finding ............ 633
      A4.4 Continued fractions ................................ 635
   Appendix 5: Public key cryptography and the RSA
      cryptosystem ............................................ 640
   Appendix 6: Proof of Lieb's theorem ........................ 645

Bibliography .................................................. 649
Index ......................................................... 665


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:06 2019. Размер: 22,968 bytes.
Посещение N 1565 c 23.10.2012