FOREWORD ..................................................... xiii
PREFACE ........................................................ xv
1 NANO-CMOS SCALING PROBLEMS AND IMPLICATIONS .................. 1
1.1 Design Methodology in the Nano-CMOS Era ................. 1
1.2 Innovations Needed to Continue Performance Scaling ...... 3
1.3 Overview of Sub-100-nm Scaling Challenges and
Subwavelength Optical Lithography ....................... 6
1.3.1 Back-End-of-Line Challenges (Metallization)....... 6
1.3.2 Front-End-of-Line Challenges (Transistors) ...... 12
1.4 Process Control and Reliability ........................ 15
1.5 Lithographic Issues and Mask Data Explosion ............ 16
1.6 New Breed of Circuit and Physical Design Engineers ..... 17
1.7 Modeling Challenges .................................... 17
1.8 Need for Design Methodology Changes .................... 19
1.9 Summary ................................................ 21
References .................................................. 21
PART I PROCESS TECHNOLOGY AND SUBWAVELENGTH OPTICAL
LITHOGRAPHY: PHYSICS, THEORY OF OPERATION, ISSUES, AND
SOLUTIONS
2 CMOS DEVICE AND PROCESS TECHNOLOGY .......................... 24
2.1 Equipment Requirements for Front-End Processing ........ 24
2.1.1 Technical Background ............................ 24
2.1.2 Gate Dielectric Scaling ......................... 26
2.1.3 Strain Engineering .............................. 33
2.1.4 Rapid Thermal Processing Technology ............. 34
2.2 Front-End-Device Problems in CMOS Scaling .............. 41
2.2.1 CMOS Scaling Challenges ......................... 41
2.2.2 Quantum Effects Model ........................... 43
2.2.3 Polysilicon Gate Depletion Effects .............. 45
2.2.4 Metal Gate Electrodes ........................... 48
2.2.5 Direct-Tunneling Gate Leakage ................... 49
2.2.6 Parasitic Capacitance ........................... 52
2.2.7 Reliability Concerns ............................ 56
2.3 Back-End-of-Line Technology ............................ 58
2.3.1 Interconnect Scaling ............................ 59
2.3.2 Copper Wire Technology .......................... 61
2.3.3 Low-k Dielectric Challenges ..................... 64
2.3.4 Future Global Interconnect Technology ........... 65
References .................................................. 66
3 THEORY AND PRACTICALITIES OF SUBWAVELENGTH OPTICAL
LITHOGRAPHY ................................................. 73
3.1 Introduction and Simple Imaging Theory ................. 73
3.2 Challenges for the 100-nm Node ......................... 76
3.2.1 k-Factor for the 100-nm Node .................... 77
3.2.2 Significant Process Variations .................. 78
3.2.3 Impact of Low-k Imaging on Process
Sensitivities ................................... 82
3.2.4 Low-k Imaging and Impact on Depth of Focus ...... 83
3.2.5 Low-k Imaging and Exposure Tolerance ............ 84
3.2.6 Low-k Imaging and Impact on Mask Error
Enhancement Factor .............................. 84
3.2.7 Low-k Imaging and Sensitivity to Aberrations .... 86
3.2.8 Low-k Imaging and CD Variation as a Function
of Pitch ........................................ 86
3.2.9 Low-k Imaging and Corner Rounding Radius ........ 89
3.3 Resolution Enhancement Techniques: Physics ............. 91
3.3.1 Specialized Illumination Patterns ............... 92
3.3.2 Optical Proximity Corrections ................... 94
3.3.3 Subresolution Assist Features .................. 101
3.3.4 Alternating Phase-Shift Masks .................. 103
3.4 Physical Design Style Impact on RET and OPC
Complexity ............................................ 107
3.4.1 Specialized Illumination Conditions ............ 108
3.4.2 Two-Dimensional Layouts ........................ 111
3.4.3 Alternating Phase-Shift Masks .................. 114
3.4.4 Mask Costs ..................................... 118
3.5 The Road Ahead: Future Lithographic Technologies ...... 121
3.5.1 The Evolutionary Path: 157-nm Lithography ...... 121
3.5.2 Still Evolutionary: Immersion Lithography ...... 122
3.5.3 Quantum Leap: EUV Lithography .................. 124
3.5.4 Particle Beam Lithography ...................... 126
.3.5.5 Direct-Write Electron Beam Tools ............... 126
References ............................................ 130
PART II PROCESS SCALING IMPACT ON DESIGN
4 MIXED-SIGNAL CIRCUIT DESIGN ................................ 134
4.1 Introduction .......................................... 134
4.2 Design Considerations ................................. 134
4.3 Device Modeling ....................................... 135
4.4 Passive Components .................................... 142
4.5 Design Methodology .................................... 146
4.5.1 Benchmark Circuits ............................. 146
4.5.2 Design Using Thin Oxide Devices ................ 146
4.5.3 Design Using Thick Oxide Devices ............... 148
4.6 Low-Voltage Techniques ................................ 150
4.6.1 Current Mirrors ................................ 150
4.6.2 Input Stages ................................... 152
4.6.3 Output Stages .................................. 153
4.6.4 Bandgap References ............................. 154
4.7 Design Procedures ..................................... 155
4.8 Electrostatic Discharge Protection .................... 157
4.8.1 Multiple-Supply Concerns ....................... 157
4.9 Noise Isolation ....................................... 159
4.9.1 Guard Ring Structures .......................... 159
4.9.2 Isolated NMOS Devices .......................... 161
4.9.3 Epitaxial Material versus Bulk Silicon ......... 161
4.10 Decoupling ............................................ 162
4.11 Power Busing .......................................... 166
4.12 Integration Problems .................................. 167
4.12.1 Corner Regions ................................ 167
4.12.2 Neighboring Circuitry ......................... 167
4.13 Summary ............................................... 168
References ................................................. 168
5 ELECTROSTATIC DISCHARGE PROTECTION DESIGN .................. 172
5.1 Introduction .......................................... 172
5.2 ESD Standards and Models .............................. 173
5.3 ESD Protection Design ................................. 173
5.3.1 ESD Protection Scheme .......................... 173
5.3.2 Turn-on Uniformity of ESD Protection Devices ... 175
5.3.3 ESD Implantation and Silicide Blocking ......... 177
5.3.4 ESD Protection Guidelines ...................... 178
5.4 Low-C ESD Protection Design for High-Speed I/O ........ 178
5.4.1 ESD Protection for High-Speed I/O or Analog
Pins ........................................... 178
5.4.2 Low-C ESD Protection Design .................... 180
5.4.3 Input Capacitance Calculations ................. 183
5.4.4 ESD Robustness ................................. 185
5.4.5 Turn-on Verification ........................... 186
5.5 ESD Protection Design for Mixed-Voltage I/O ........... 190
5.5.1 Mixed-Voltage I/O Interfaces ................... 190
5.5.2 ESD Concerns for Mixed-Voltage I/O
Interfaces ..................................... 191
5.5.3 ESD Protection Device for a Mixed-Voltage I/O
Interface ...................................... 192
5.5.4 ESD Protection Circuit Design for a Mixed-
Voltage I/O Interface .......................... 195
5.5.5 ESD Robustness ................................. 198
5.5.6 Turn-on Verification ........................... 199
5.6 SCR Devices for ESD Protection ........................ 200
5.6.1 Turn-on Mechanism of SCR Devices ............... 201
5.6.2 SCR-Based Devices for CMOS On-Chip ESD
Protection ..................................... 202
5.6.3 SCR Latch-up Engineering ....................... 210
5.7 Summary ............................................... 212
References ............................................ 213
6 INPUT/OUTPUT DESIGN ........................................ 220
6.1 Introduction .......................................... 220
6.2 I/O Standards ......................................... 221
6.3 Signal Transfer ....................................... 222
6.3.1 Single-Ended Buffers ........................... 223
6.3.2 Differential Buffers ........................... 223
6.4 ESD Protection ........................................ 227
6.5 I/O Switching Noise ................................... 228
6.6 Termination ........................................... 232
6.7 Impedance Matching .................................... 234
6.8 Preemphasis ........................................... 235
6.9 Equalization .......................................... 237
6.10 Conclusion ............................................ 238
References ................................................. 239
7 DRAM ....................................................... 241
7.1 Introduction .......................................... 241
7.2 DRAM Basics ........................................... 241
7.3 Scaling the Capacitor ................................. 245
7.4 Scaling the Array Transistor .......................... 247
7.5 Scaling the Sense Amplifier ........................... 249
7.6 Summary ............................................... 253
References ................................................. 253
8 SIGNAL INTEGRITY PROBLEMS IN ON-CHIP INTERCONNECTS ......... 255
8.1 Introduction .......................................... 255
8.1.1 Interconnect Figures of Merit .................. 258
8.2 Interconnect Parasitics Extraction .................... 259
8.2.1 Circuit Representation of Interconnects ........ 260
8.2.2 RC Extraction .................................. 263
8.2.3 Inductance Extraction .......................... 267
8.3 Sigaal Integrity Analysis ............................. 271
8.3.1 Interconnect Driver Models ..................... 272
8.3.2 RC Interconnect Analysis ....................... 274
8.3.3 RLC Interconnect Analysis ...................... 277
8.3.4 Noise-Aware Timing Analysis .................... 281
8.4 Design Solutions for Signal Integrity ................. 283
8.4.1 Physical Design Techniques ..................... 284
8.4.2 Circuit Techniques ............................. 288
8.5 Summary ............................................... 293
References ................................................. 294
9 ULTRALOW POWER CIRCUIT DESIGN .............................. 298
9.1 Introduction .......................................... 298
9.2 Design-Time Low-Power Techniques ...................... 300
9.2.1 System- and Architecture-Level Design-Time
Techniques ..................................... 300
9.2.2 Circuit-Level Design-Time Techniques ........... 300
9.2.3 Memory Techniques at Design Time ............... 305
9.3 Run-Time Low-Power Techniques ......................... 311
9.3.1 System- and Architecture-Level Run-Time
Techniques ..................................... 311
9.3.2 Circuit-Level Run-Time Techniques .............. 313
9.3.3 Memory Techniques at Run Time .................. 316
9.4 Technology Innovations for Low-Power Design ........... 320
9.4.1 Novel Device Technologies ...................... 320
9.4.2 Assembly Technology Innovations ................ 321
9.5 Perspectives for Future Ultralow-Power Design ......... 321
9.5.1 Subthreshold Circuit Operation ................. 322
9.5.2 Fault-Tolerant Design .......................... 322
9.5.3 Asynchronous versus Synchronous Design ......... 323
9.5.4 Gate-Induced Leakage Suppression Schemes ....... 323
References ................................................. 324
PART III IMPACT OF PHYSICAL DESIGN ON MANUFACTURING/YIELD
AND PERFORMANCE
10 DESIGN FOR MANUFACTURABILITY ............................... 331
10.1 Introduction .......................................... 331
10.2 Comparison of Optimal and Suboptimal Layouts .......... 332
10.1 Global Route DFM ...................................... 338
10.4 Analog DFM ............................................ 339
10.5 Some Rules of Thumb ................................... 341
10.6 Summary ............................................... 342
References ................................................. 342
11 DESIGN FOR VARIABILITY ..................................... 343
11.1 Impact of Variations on Future Design ................. 343
11.1.1 Parametric Variations in Circuit Design ........ 343
11.1.2 Impact on Circuit Performance .................. 345
11.2 Strategies to Mitigate Impact Due to Variations ....... 347
11.2.1 Clock Distribution Strategies to Minimize
Skew ........................................... 347
11.2.2 SRAM Techniques to Deal with Variations ........ 351
11.2.3 Analog Strategies to Deal with Variations ...... 361
11.2.4 Digital Circuit Strategies to Deal with
Variations ..................................... 370
11.3 Corner Modeling Methodology for Nano-CMOS Processes ... 376
11.3.1 Need for Statistical Models .................... 376
11.3.2 Statistical Model Use .......................... 378
11.4 New Features of the BSIM4 Model ....................... 381
11.4.1 Halo/Pocket Implant ............................ 381
11.4.2 Gate-Induced Drain Leakage and Gate Direct
Tunneling ...................................... 382
11.4.3 Modeling Challenges ............................ 383
11.4.4 Model-Specific Issues .......................... 384
11.4.5 Model Summary .................................. 385
11.5 Summary ............................................... 385
References ................................................. 385
INDEX ......................................................... 389
|