Modern methods of crystal structure prediction (Weinheim; Chichester, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаModern methods of crystal structure prediction / ed. by A.R.Oganov. - Weinheim; Chichester: Wiley-VCH, 2011. - xxi, 251 p.: ill. (some col.). - Incl. bibl. ref. - Ind.: p.247-251. - ISBN 978-3-527-40939-6
 

Оглавление / Contents
 
   List of Contributors ........................................ IX
   Introduction: Crystal Structure Prediction, a Formidable
   Problem ..................................................... XI
1  Periodic-Graph Approaches in Crystal Structure Prediction .... 1
   Vladislav A. Blatov and Davide M. Proserpio
   1.1  Introduction ............................................ 1
   1.2  Terminology ............................................. 2
   1.3  The Types of Periodic Nets Important for Crystal 
        Structure Prediction .................................... 5
   1.4  The Concept of Topological Crystal Structure
        Representation .......................................... 7
   1.5  Computer Tools and Databases ........................... 10
   1.6  Current Results on Nets Abundance ...................... 12
   1.7  Some Properties of Nets Influencing the Crystal
        Structure .............................................. 14
        1.7.1  Symmetry of Nets and Embeddings ................. 14
        1.7.2  Relations Between Nets .......................... 17
        1.7.3  Role of Geometrical and Coordination
               Parameters ...................................... 18
  1.8  Outlook ................................................. 25
   References .................................................. 26
2  Energy Landscapes and Structure Prediction Using Basin-
   Hopping ..................................................... 29
   David J. Wales
   2.1  Introduction ........................................... 29
   2.2  Visualizing the Landscape .............................. 30
   2.3  Basin-Hopping Global Optimization ...................... 36
   2.4  Energy Landscapes for Crystals and Glasses ............. 42
   References .................................................. 46
3  Random Search Methods ....................................... 55
   William W. Tipton and Richard G. Hennig
   3.1  Introduction ........................................... 55
   3.2  History and Overview ................................... 57
   3.3  Methods ................................................ 58
   3.4  Applications and Results ............................... 61
   3.5  Summary and Conclusions ................................ 64
   References .................................................. 65
4  Predicting Solid Compounds Using Simulated Annealing ........ 67
   J. Christian Schön and Martin Jansen
   4.1  Introduction ........................................... 67
   4.2  Locally Ergodic Regions on the Energy Landscape of
        Chemical Systems ....................................... 68
   4.3  Simulated Annealing and Related Stochastic Walker-
        Based Algorithms ....................................... 71
        4.3.1  Basic Simulated Annealing ....................... 71
        4.3.2  Adjustable Features in Simulated Annealing ...... 74
               4.3.2.1  Choice of Moveclass .................... 74
               4.3.2.2  Temperature Schedule and Acceptance
                        Criterion .............................. 76
               4.3.2.3  Extensions and Generalizations of 
                        Simulated Annealing .................... 77
   4.4  Examples ............................................... 79
        4.4.1  Structure Prediction ............................ 80
               4.4.1.1  Alkali Metal Halides ................... 80
               4.4.1.2  Na3N ................................... 81
               4.4.1.3  Mg(BH4)2 ............................... 82
               4.4.1.4  Elusive Alkali Metal Orthocarbonates
                        Balancing M4(CO4) and M2O + M2(CO3),
                        with M = Li, Na, K, Rb, Cs ............. 83
               4.4.1.5  Alkali Metal Sulfides M2S (M = Li,
                        Na, K, Rb, Cs) ......................... 83
               4.4.1.6  Boron Nitride .......................... 84
               4.4.1.7  Structure Prediction of SrO as
                        Function of Temperature and Pressure ... 84
               4.4.1.8  Phase Diagrams of the Quasi-Binary
                        Mixed Alkali Halides ................... 86
        4.4.2  Structure Prediction Employing Structural
               Restrictions .................................... 87
               4.4.2.1  Complex Ions as Primary Building
                        Units .................................. 87
               4.4.2.2  Molecular Crystals ..................... 88
               4.4.2.3  Zeolites ............................... 91
               4.4.2.4  Phase Diagrams Restricted to 
                        Prescribed Sublattices ................. 92
         4.4.3  Structure Determination ........................ 94
               4.4.3.1  Structure Determination using
                        Experimental Cell Information .......... 94
               4.4.3.2  Reverse Monte Carlo Method and Pareto
                        Optimization ........................... 94
   4.5  Evaluation and Outlook ................................. 96
        4.5.1  State-of-the-Art ................................ 96
        4.5.2  Future .......................................... 97
   References .................................................. 98
5  Simulation of Structural Phase Transitions in Crystals: 
   The Metadynamics Approach .................................. 107
   Roman Martoñák
   5.1  Introduction .......................................... 107
   5.2  Simulation of Structural Transformations .............. 108
   5.3  The Metadynamics-Based Algorithm ...................... 110
   5.4  Practical Aspects ..................................... 113
   5.5  Examples of Applications .............................. 115
   5.6  Conclusions and Outlook ............................... 125
   Acknowledgments ............................................ 126
   References ................................................. 127
6  Global Optimization with the Minima Hopping Method ......... 131
   Stefan Goedecker
   6.1  Posing the Problem .................................... 131
   6.2  The Minima Hopping Algorithm .......................... 134
   6.3  Applications of the Minima Hopping Method ............. 142
   6.4  Conclusions ........................................... 143
   References ................................................. 144
7  Crystal Structure Prediction Using Evolutionary Approach ... 147
   Andriy O. Lyakhov, Artem R. Oganov, and Mario Valle
   7.1  Theory ................................................ 148
        7.1.1  Search Space, Population, and Fitness
               Function ....................................... 150
        7.1.2  Representation ................................. 150
        7.1.3  Local Optimization and Constrains .............. 151
        7.1.4  Initialization of the First Generation ......... 152
        7.1.5  Variation Operators ............................ 155
        7.1.6  Survival of the Fittest and Selection of
               Parents ........................................ 157
        7.1.7  Halting Criteria ............................... 158
        7.1.8  Premature Convergence and How to Prevent It:
               Fingerprint Function ........................... 159
        7.1.9  Improved Selection Rules and Heredity
               Operator ....................................... 161
        7.1.10 Extension to Molecular Crystals ................ 162
        7.1.11 Adaptation to Clusters ......................... 162
        7.1.12 Extension to Variable Compositions: Toward
               Simultaneous Prediction of Stoichiometry and
               Structure ...................................... 163
   7.2  A Few Illustrations of the Method ..................... 164
        7.2.1  Elements ....................................... 165
                7.2.1.1  Boron: Novel Phase with a Partially
                         Ionic Character ...................... 165
                7.2.1.2  Sodium: A Metal that Goes
                         Transparent under Pressure ........... 167
                7.2.1.3  Superconducting ξ-Oxygen ............. 170
                7.2.1.4  Briefly on Some of the (Many)
                         Interesting Carbon Structures ........ 171
        7.2.2  Compounds and Minerals ......................... 172
                7.2.2.1  Insulators by Metal Alloying? ........ 172
                7.2.2.2  MgB2: Analogy with Carbon and Loss
                         of Superconductivity under
                         Pressure ............................. 172
                7.2.2.3  Hydrogen-Rich Hydrides under
                         Pressure, and Their 
                         Superconductivity .................... 173
                7.2.2 A  High-Pressure Polymorphs of СаСО3 .... 175
   7.3  Conclusions ........................................... 176
   Acknowledgments ............................................ 177
   References ................................................. 277
8  Pathways of Structural Transformations in Reconstructive
   Phase Transitions: Insights from Transition Path Sampling
   Molecular Dynamics ......................................... 181
   Stefano Leoni and Salah Eddine Boulfelfel
   8.1  Introduction .......................................... 181
        8.1.1  Shape of the Nuclei ............................ 182
   8.2  Transition Path Sampling Molecular Dynamics ........... 183
        8.2.1  First Trajectory ............................... 183
        8.2.2  Trajectory Shooting and Shifting ............... 184
   8.3  The Lesson of Sodium Chloride ......................... 186
        8.3.1  Simulation Strategy ............................ 187
        8.3.2  Topological Models ............................. 187
        8.3.3  Combining Modeling and Molecular Dynamics
               Simulations .................................... 190
        8.3.4  The Mechanism of the B1-B2 Phase Transition .... 191
        8.3.5  Crossing the Line: NaBr ........................ 193
   8.4  The Formation of Domains .............................. 194
   8.5  Structure of the B2-B1 Interfaces ..................... 197
        8.5.1  Domain Formation in RbCl ....................... 199
        8.5.2  Liquid Interfaces in CaF2 ...................... 201
   8.6  Domain Fragmentation in CdSe Under Pressure ........... 204
        8.6.1  B4-B1-B4 Transformation ........................ 206
        8.6.2  Defects ........................................ 209
        8.6.3  The Lesson of CdSe ............................. 209
   8.7  Intermediate Structures During Phase Transitions ...... 210
        8.7.1  Intermediates Along the Pressure-Induced
               Transformation of GaN .......................... 211
        8.7.2  Polymorphism and Transformations of ZnO:
               Tetragonal or Hexagonal Intermediate? .......... 214
   8.8  Conclusions ........................................... 217
   References ................................................. 218

   Appendix: First Blind Test of Inorganic Crystal Structure
        Prediction Methods .................................... 223

   Color Plates ............................................... 233

   Index ...................................................... 245


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:06 2019. Размер: 15,439 bytes.
Посещение N 1629 c 23.10.2012