Preface ..................................................... XV
List of Contributors ....................................... XIX
Part One Design of Multifunctional Porous MOFs ................. 1
1 Design of Porous Coordination Polymers/Metal-Organic
Frameworks: Past, Present and Future ......................... 3
Satoshi Horike and Susumu Kitagawa
1.1 Introduction ............................................ 3
1.2 Background and Ongoing Chemistry of Porous
Coordination Polymers ................................... 3
1.2.1 Frameworks with High Surface Area ................ 5
1.2.2 Lewis Acidic Frameworks .......................... 6
1.2.3 Soft Porous Crystals ............................. 8
1.3 Multifunctional Frameworks ............................. 10
1.3.1 Porosity and Magnetism .......................... 10
1.3.2 Porosity and Conductivity/Dielectricity ......... 12
1.3.3 Porous Flexibility and Catalysis ................ 12
1.4 Preparation of Multifunctional Frameworks .............. 13
1.4.1 Mixed Ligands and Mixed Metals .................. 13
1.4.2 Core-Shell ...................................... 16
1.4.3 PCPs and Nanoparticles .......................... 17
1.5 Perspectives ........................................... 18
References .................................................. 19
2 Design of Functional Metal-Organic Frameworks by Post-
Synthetic Modification ...................................... 23
David Farrusseng, Jérôme Canivet, and Alessandra Quadrelli
2.1 Building a MOFs Toolbox by Post-Synthetic
Modification ........................................... 23
2.1.1 Taking Advantage of Immobilization in a Porous
Solid ........................................... 23
2.1.2 Unique Reactivity of MOFs ....................... 24
2.2 Post-Functionalization of MOFs by Host-Guest
Interactions ........................................... 26
2.2.1 Guest Absorption ................................ 26
2.2.2 Nanoparticle Encapsulation ...................... 27
2.3 Post-Functionalization of MOFs Based on Coordination
Chemistry .............................................. 28
2.3.1 Coordination to Unsaturated Metal Centers ....... 28
2.3.2 Coordination to Organic Linkers ................. 30
2.4 Post-Functionalization of MOFs by Covalent Bonds ....... 31
2.4.1 Chemical Modification by Amide Coupling ......... 32
2.4.2 Chemical Modification by Imine Condensation ..... 33
2.4.3 Chemical Modification by Click Chemistry ........ 34
2.4.4 Reactivity of Bridging Hydroxyl Groups .......... 38
2.5 Tandem Post-Modification for the Immobilization of
Organometallic Catalysts ............................... 39
2.6 Critical Assessment .................................... 41
2.6.1 Synthetic Restrictions .......................... 43
2.6.2 Balance Between Functionalization Rate and
Material Efficacy ............................... 43
2.6.3 Characterization of the Functionalized
Materials ....................................... 44
2.7 Conclusion ............................................. 45
References .................................................. 45
Part Two Gas Storage and Separation Applications .............. 49
3 Thermodynamic Methods for Prediction of Gas Separation
in Flexible Frameworks ...................................... 51
François-Xavier Coudert
3.1 Introduction ........................................... 51
3.1.1 Gas Separation in Metal-Organic Frameworks ...... 51
3.1.2 Dynamic Materials in the MOF Family ............. 52
3.1.3 Possible Applications of Flexible MOFs .......... 54
3.1.4 Need for Theoretical Methods Describing
Adsorption and Framework Flexibility ............ 55
3.2 Theoretical Background ................................. 56
3.2.1 The Osmotic Ensemble ............................ 56
3.2.2 Classical Uses of the Osmotic Ensemble in
Molecular Simulation ............................ 57
3.3 Molecular Simulation Methods ........................... 58
3.3.1 Direct Molecular Simulation of Adsorption in
Flexible Porous Solids .......................... 58
3.3.2 Use of the Restricted Osmotic Ensemble .......... 60
3.4 Analytical Methods Based on Experimental Data .......... 62
3.4.1 Analytical Methods for Adsorption. Taxonomy of
Guest-Induced Flexibility ....................... 62
3.4.2 Application to Coadsorption: Selectivity
Predictions and Pressure-Composition Phase
Diagrams ........................................ 63
3.5 Outlook ................................................ 66
References .................................................. 67
4 Separation and Purification of Cases by MOFs ................ 69
Elisa Barea, Fabrizio Tuna, and Jorge A. Rodriguez Navarro
4.1 Introduction ........................................... 69
4.2 General Principles of Gas Separation and
Purification ........................................... 72
4.2.1 Some Definitions ................................ 72
4.2.2 MOFs: New Opportunities for Separation
Processes ....................................... 73
4.2.3 Mechanisms of Separation and Design of MOFs
for Separation Processes ........................ 73
4.2.4 Experimental Techniques and Methods to
Evaluate/Characterize Porous Adsorbents ......... 77
4.3 MOFs for Separation and Purification Processes ......... 79
4.3.1 MOF Materials as Molecular Sieves ............... 79
4.3.2 Flexible MOFs for Enhanced Adsorption
Selectivity ..................................... 81
4.3.3 MOFs with Coordination Unsaturated Metal
Centers for Enhanced Selective Adsorption and
Dehydration ..................................... 86
4.3.4 Hydrocarbon Separation .......................... 88
4.3.5 VOC Capture ..................................... 89
4.3.6 Catalytic Decomposition of Trace Gases .......... 91
4.4 Conclusions and Perspectives ........................... 92
References .................................................. 92
5 Opportunities for MOFs in CO2 Capture from Flue Cases,
Natural Cas, and Syngas by Adsorption ....................... 99
Gerhard D. Pirngruber and Philip L. Llewellyn
5.1 Introduction ........................................... 99
5.2 General Introduction to Pressure Swing Adsorption ...... 99
5.3 Production of H2 from Syngas .......................... 101
5.3.1 Requirements for CO2 Adsorbents in H2-PSAs ..... 103
5.4 C02 Removal from Natural Gas .......................... 103
5.4.1 Requirements for Adsorbents for CO2-CH4
Separation in Natural Gas ...................... 104
5.5 Post-combustion CO2 Capture ........................... 105
5.5.1 The State of the Art ........................... 105
5.5.2 PSA and VSA Processes in Post-Combustion CO2
Capture ........................................ 106
5.5.3 Requirements for Adsorbents for CO2 Capture
in Flue Gases .................................. 107
5.6 MOFs 108
5.6.1 Considerations of Large Synthesis and
Stability ...................................... 108
5.6.2 MOFs for H2-PSA ................................ 109
5.6.3 MOFs for CO2 Removal from Natural Gas .......... 113
5.6.4 MOFs for Post-Combustion CO2 Capture ........... 113
5.7 Conclusions ........................................... 116
References ................................................. 116
6 Manufacture of MOF Thin Films on Structured Supports for
Separation and Catalysis ................................... 121
Sonia Aguado and David Farrusseng
6.1 Advantages and Limitations of Membrane Technologies
for Gas and Liquid Separation ......................... 121
6.2 Mechanism of Mass Transport and Separation ............ 123
6.3 Synthesis of Molecular Sieve Membranes ................ 127
6.3.1 Synthesis of Zeolite Membranes ................. 127
6.3.1.1 Direct Nucleation-Growth on the
Support ............................... 128
6.3.1.2 Secondary Growth ...................... 129
6.3.2 Preparation of MOF Membranes and Films ......... 129
6.3.2.1 Self-Assembled Layers ................. 130
6.3.2.2 Solvothermal Synthesis: Direct and
Secondary Growth ...................... 131
6.4 Application of MOF Membranes .......................... 137
6.4.1 Gas Separation ................................. 137
6.4.1.1 Metal Carboxylate-Based Membranes ..... 137
6.4.1.2 Zinc Imidazolate-Based Membranes ...... 138
6.4.2 Shaped Structured Reactors ..................... 141
6.4.3 Perspectives for Future Applications ........... 143
6.5 Limitations ........................................... 143
6.6 Conclusions and Outlook ............................... 146
References ................................................. 147
7 Research Status of Metal-Organic Frameworks for On-Board
Cryo-Adsorptive Hydrogen Storage Applications .............. 151
Anne Dailly
7.1 Introduction - Research Problem and Significance ...... 151
7.1.1 Challenges in Hydrogen Storage Technologies
for Hydrogen Fuel Cell Vehicles ................ 151
7.1.2 Current Status of Hydrogen Storage Options
and R&D for the Future ......................... 152
7.2 MOFs as Adsorptive Hydrogen Storage Options ........... 154
7.3 Experimental Techniques and Methods for Performance
and Thermodynamic Assessment of Porous MOFs for
Hydrogen Storage ...................................... 156
7.4 Material Research Results ............................. 159
7.4.1 Structure-Hydrogen Storage Properties
Correlations ................................... 159
7.4.2 Nature of the Adsorbed Hydrogen Phase .......... 162
7.5 From Laboratory-Scale Materials to Engineering ........ 165
7.6 Conclusion ............................................ 167
References ................................................. 168
Part Three Bulk Chemistry Applications ........................ 171
8 Separation of Xylene Isomers ............................... 173
Joeri F.M Denayer, Dirk De Vos, and Philibert Leflaive
8.1 Xylene Separation: Industrial Processes, Adsorbents,
and Separation Principles ............................. 173
8.2 Properties of MOFs Versus Zeolites in Xylene
Separations ........................................... 176
8.3 Separation of Xylenes Using MIL-47 and MIL-53 ......... 178
8.3.1 Low-Coverage Gas-Phase Adsorption Properties ... 179
8.3.2 Molecular Packing .............................. 180
8.3.3 Separation of Xylene-Mixtures .................. 184
8.4 Conclusions ........................................... 185
References ................................................. 187
9 Metal-Organic Frameworks as Catalysts for Organic
Reactions .................................................. 191
Lik Hong Wee, Luc Alaerts, Johan A. Martens, and Dirk De
Vos
9.1 Introduction .......................................... 191
9.2 MOFs with Catalytically Active Metal Nodes in the
Framework ............................................. 191
9.2.1 Transition Metal Nodes ......................... 192
9.2.2 Coordinatively Unsaturated Metal Nodes ......... 194
9.3 Catalytic Functionalization of Organic Framework
Linkers ............................................... 195
9.3.1 Porphyrin Functional Groups .................... 195
9.3.2 Amine and Amide Functions Incorporated via
Grafting ....................................... 196
9.4 Homochiral MOFs ....................................... 198
9.4.1 MOFs with Intrinsic Chirality .................. 198
9.4.2 Chiral Organic Catalytic Functions ............. 199
9.4.3 Metalloligands ................................. 200
9.5 MOF-Encapsulated Catalytically Active Guests .......... 201
9.5.1 Polyoxometalates (POMs) ........................ 201
9.5.2 Metalloporphyrins .............................. 203
9.5.3 Metal Nanoparticles ............................ 204
9.6 Mesoporous MOFs ....................................... 206
9.7 Conclusions ........................................... 209
References ................................................. 210
Part Four Medical Applications ................................ 213
10 Biomedical Applications of Metal-Organic Frameworks ........ 215
Patricia Horcajada, Christian Serre, Alistair C.
McKinlay, and Russell E. Morris
10.1 Introduction .......................................... 215
10.2 MOFs for Bioapplications .............................. 216
10.2.1 Choosing the Right Composition ................. 216
10.2.2 The Role of Flexibility ........................ 217
10.2.4 Biodegradability and Toxicity of MOFs .......... 219
10.3 Therapeutics .......................................... 221
10.3.1 Drug Delivery .................................. 221
10.3.2 BioMOFs: the Use of Active Linkers ............. 227
10.3.3 Release of Nitric Oxide ........................ 228
10.3.4 Activity Tests ................................. 231
10.3.4.1 Activity of Drag-Containing MOFs ...... 231
10.3.4.2 Activity of NO-Loaded Samples ......... 233
10.3.4.3 Activity of Silver Coordination
Polymers .............................. 234
10.4 Diagnostics ........................................... 235
10.4.1 Magnetic Resonance Imaging ..................... 235
10.4.2 Optical Imaging ................................ 236
10.5 From Synthesis of Nanoparticles to Surface
Modification and Shaping .............................. 237
10.5.1 Synthesis of Nanoparticles ..................... 237
10.5.2 Surface Engineering ............................ 239
10.5.3 Shaping ........................................ 239
10.6 Discussion and Conclusion ............................. 242
References ................................................. 244
11 Metal-Organic Frameworks for Biomedical Imaging ............ 251
Joseph Delia Rocca and Wenbin Lin
11.1 Introduction .......................................... 251
11.2 Gadolinium Carboxylate NMOFs .......................... 253
11.3 Manganese Carboxylate NMOFs ........................... 257
11.4 Iron Carboxylate NMOFs: the MIL Family ................ 258
11.5 Iodinated NMOFs: CT Contrast Agents ................... 260
11.6 Lanthanide Nucleotide NMOFs ........................... 262
11.7 Guest Encapsulation within NMOFs ...................... 263
11.8 Conclusion ............................................ 264
References ................................................. 264
Part Five Physical Applications .............................. 267
12 Luminescent Metal-Organic Frameworks ....................... 269
John J. Perry IV, Christina A. Bauer, and Mark D.
Allendoif
12.1 Introduction .......................................... 269
12.2 Luminescence Theory ................................... 270
12.2.1 Photoluminescence .............................. 270
12.2.2 Fluorescence Quenching ......................... 273
12.2.3 Energy Transfer ................................ 273
12.3 Ligand-Based Luminescence ............................. 274
12.3.1 Solid-State Luminescence of Organic
Molecules ...................................... 274
12.3.2 Ligand-Based Luminescence in MOFs .............. 275
12.3.3 Ligand-to-Metal Charge Transfer in MOFs ........ 280
12.3.4 Metal-to-Ligand Charge Transfer in MOFs ........ 281
12.4 Metal-Based Luminescence .............................. 282
12.4.1 Metal Luminophores ............................. 282
12.4.2 Lanthanide Luminescence and the Antenna
Effect ......................................... 282
12.4.3 Examples of Metal-Based Luminescence ........... 282
12.4.3.1 Metal-Centered Luminescence ........... 282
12.4.3.2 Metal-to-Metal Charge Transfer
(MMCT) ................................ 286
12.4.4 Lanthanide Luminescence as a Probe of the
Metal-Ligand Coordination Sphere ............... 287
12.5 Guest-Induced Luminescence ............................ 287
12.5.1 Encapsulation of Luminophores .................. 288
12.5.2 Guest-Induced Charge Transfer Excimers and
Exciplexes ..................................... 290
12.5.3 Encapsulation of Lanthanide Ion
Luminophores ................................... 291
12.6 Applications of Luminescent MOFs ...................... 293
12.6.1 Chemical Sensors ............................... 293
12.6.1.1 Small-Molecule and Ion Sensors ........ 294
12.6.1.2 Oxygen Sensors ........................ 296
12.6.1.3 Detection of Explosives ............... 297
12.6.2 Radiation Detection ............................ 298
12.6.3 Solid-State Lighting ........................... 298
12.6.4 Nonlinear Optics ............................... 300
12.6.5 Barcode Labeling ............................... 300
12.7 Conclusion ............................................ 301
References ................................................. 302
13 Deposition of Thin Films for Sensor Applications ........... 309
Mark Allendorf, Angélique Bétard, and Roland A. Fischer
13.1 Introduction .......................................... 309
13.2 Literature Survey ..................................... 310
13.3 Signal Transduction Modes ............................. 310
13.4 Considerations in Selecting MOFs for Sensing
Applications .......................................... 312
13.4.1 Pore Dimensions ................................ 312
13.4.2 Adsorption Thermodynamics ...................... 313
13.4.3 Film Attachment ................................ 315
13.4.4 Film Thickness and Morphology .................. 318
13.4.5 Response Time .................................. 319
13.4.6 Mechanical Properties .......................... 320
13.5 MOF Thin Film Growth: Methods, Mechanisms, and
Limitations ........................................... 320
13.5.1 Growth From Aged Solvothermal Mother
Solutions ...................................... 320
13.5.2 Assembly of Preformed MOF (Nano-) Particles
or Layers ...................................... 323
13.5.3 Electrochemical Deposition ..................... 325
13.5.4 Liquid-Phase Epitaxy ........................... 325
13.5.5 Toward Heteroepitaxial Growth of Multiple
MOF Layers ..................................... 328
13.5.6 Growth of MOF Films in Confined Spaces ......... 329
13.5.7 Comparison of the Different Methods for MOF
Thin Film Growth ............................... 331
13.6 Conclusions and Perspectives .......................... 331
References ................................................. 332
Part Six Large-Scale Synthesis and Shaping of MOFs ........... 337
14 Industrial MOF Synthesis ................................... 339
Alexander Czaja, Emi Leung, Natalia Trukhan, and Ulrich
Müller
14.1 Introduction .......................................... 339
14.2 Raw Materials ......................................... 340
14.2.1 Metal Sources .................................. 340
14.2.2 linkers ........................................ 340
14.3 Synthesis ............................................. 343
14.3.1 Hydrothermal Synthesis ......................... 344
14.3.2 Electrochemical Synthesis ...................... 345
14.4 Shaping ............................................... 347
14.5 Applications .......................................... 349
14.5.1 Natural Gas Storage for Automobile
Applications ................................... 349
14.5.2 Ethylene Adsorption for Food Storage ........... 350
14.6 Conclusion and Outlook ................................ 351
References ................................................. 352
15 MOF Shaping and Immobilization ............................. 353
Bertram Böhringer, Roland Fischer, Martin R. Lohe,
Marcus Rose, Stefan Kaskel, and Pia Küsgens
15.1 Introduction .......................................... 353
15.2 MOF@Fiber Composite Materials ......................... 354
15.2.1 MOF-Containing Paper Sheets .................... 354
15.2.2 MOF@Pulp Fibers ................................ 355
15.2.3 Electrospinning of MOF@Polymer Composite
Fibers ......................................... 356
15.2.4 MOF Fixation in Textile Structures ............. 359
15.2.4.1 Pretreatment ........................... 360
15.2.4.2 Wet Particle Insertion ................. 362
15.2.4.3 Dry Particle Insertion ................. 363
15.3 Requirements of Adsorbents for Individual
Protection ............................................ 367
15.3.1 Relevant Protective Clothing Applications ...... 367
15.3.2 Filter Performance ............................. 368
15.3.3 Testing the Chemical Protection Performance
of Filters ..................................... 371
15.3.4 Concepts for Application ....................... 373
15.4 MOFs in Monolithic Structures ......................... 373
15.4.1 MOF@Polymeric Beads ............................ 374
15.4.2 Extruded MOF Bodies ............................ 374
15.4.3 Monolithic MOF Gels ............................ 375
References ................................................. 379
Index ...................................................... 383
|