Preface ...................................................... xiii
List of Contributors ........................................... xv
Contents of Volumes 1 and 2 ................................... xxi
13 Dynamics of Photoinduced Charge Transfer of Fullerene
Based Donor-Acceptor Systems: From Solution to Organized
Molecular Films ............................................ 405
Nikolai V. Tkachenko and Helge Lemmetyinen
1 Introduction ............................................... 406
2 Photodynamics of Electron Transfer in Fullerene Based
Dyads ...................................................... 408
2.1 Donor-acceptor dyads .................................. 408
2.2 Charge transfer and recombination ..................... 410
2.3 Exciplex intermediate ................................. 411
2.4 Intramolecular energy transfer ........................ 420
2.5 Triplet state ......................................... 421
2.6 Reaction schemes ...................................... 422
3 Electron Transfer in Organized Molecular Films ............. 424
3.1 Organized molecular films ............................. 425
3.2 Intramolecular and intermolecular charge transfer in
films ................................................. 426
3.3 Energy transfer and excitation annihilation ........... 432
3.4 Interlayer charge transfer and photocurrent
generation ............................................ 435
4 Conclusions ................................................ 436
References ................................................. 437
14 Photoinduced Electron Transfer Between Fullerenes and
Electron-Donors Through Molecular Bridges .................. 441
Osamu Ito
1 Introduction ............................................... 442
2 Porphyrin Excitation ....................................... 443
2.1 Poфhyrin-bridge-fullerene molecules ................... 443
2.1.1 Short bisacetylene bridges ..................... 443
2.1.2 Long phenyleneacetylene bridges ................ 449
2.1.3 Long acetylene bridges ......................... 451
2.1.4 Long phenylenevinylene bridges ................. 452
2.1.5 Oligothiophene-vinylene bridges ................ 455
2.1.6 Long oligothiophene bridges .................... 456
2.1.7 Insertion of crown ether in oligo-thiophene
bridge ......................................... 461
2.1.8 Short disilane bridges ......................... 462
2.1.9 Long oligosilane bridges ....................... 464
3 Fullerene Excitation for C60-Bridge-Donor Systems .......... 465
3.1 Short linkage ......................................... 465
3.1.1 C60-bridge-aromatic amine ...................... 466
3.1.2 C60-bridge-ferrocene ........................... 467
3.2 Long linkages ......................................... 468
3.2.1 C60-thiophenevinylene-ferrocene ................ 468
3.2.2 C60-phenylenevinylene-extTTF ................... 469
4 CS Process after EnT via Bridge Excitation ................. 470
4.1 CS via isolated bridge ................................ 470
4.2 CS via conjugated bridge .............................. 473
5 Concluding Remarks ......................................... 473
References ................................................. 475
15 Photoinduced Electron Transfer Processes of Fullerene
Rotaxanes .................................................. 479
Toshikazu Takata and Osamu Ito
1 Introduction ............................................... 480
2 Symmetrical Rotaxanes ...................................... 483
2.1 Bis-biphenylamines .................................... 483
2.2 Bis-porphyrins ........................................ 486
3 Unsymmetrical Rotaxanes .................................... 491
3.1 Two components ........................................ 491
3.1.1 Ferrocene-tethered fullerene rotaxanes ......... 491
3.1.1.1 Temperature effect of flexible
rotaxane .............................. 491
3.1.1.2 Axle charge and length effects ........ 495
3.1.2 Amine-tethered fullerene rotaxanes ............. 498
3.1.3 Fullerene-tethered porphyrin rotaxanes ......... 504
3.2 Three components ...................................... 504
3.2.1 C60-porphyrin rotaxane with ferrocene as a
second donor ................................... 504
3.2.2 Triphenylamine as a second donor ............... 505
4 Concluding Remarks ......................................... 512
Acknowledgment ............................................. 514
References ................................................. 514
16 Electron Donor-Acceptor Nanohybrids and Their Application
to Light-Energy Conversion ................................. 519
Shunichi Fukuzumi
1 Introduction ............................................ 519
2 Cup-Stacked Carbon Nanotubes ............................ 522
3 Derivatives Cup-Shaped Nanocarbons ...................... 524
4 Porphyrin-Functionalized Cup-Shaped Nanocarbons ......... 530
5 Carbon Nanodiamond-Porphyrin Assembly ................... 537
6 Conclusions and Perspectives ............................ 540
7 Acknowledgments ......................................... 540
References ................................................. 541
17 Energy and Electron Transfer in Photo- and Electroactive
Fullerene Dyads ............................................ 545
Piétrick Hudhomme and Rene M. Williams
1 Introduction ............................................... 546
2 Energy and Electron Transfer: Principles and
Applications ............................................... 548
3 Fullerene-C60 Functionalized with Donor Units .............. 554
3.1 Synthetic strategies for C60-based materials .......... 554
3.2 Electroactive electron donor-C60 dyads ................ 555
4 Light-Harvesting C60-Based Dyads ........................... 561
4.1 Photoactive electron donor - C60 and electron
acceptor-C60 dyads .................................... 561
4.2 Association of perylene-3,4:9,10-bis(dicarboximide)
with C60 .............................................. 562
4.2.1 Properties and applications of PDI ............. 562
4.2.2 State of the art in C60-PDI assemblies ......... 565
4.3 Angers and Amsterdam's C60-PDI assemblies ............. 569
4.3.1 The concept of antenna ......................... 569
4.3.2 Synthesis of bay-substituted C60-PDI dyads
and corresponding electrochemical behaviour .... 569
4.3.3 Photophysics of C60-PDI dyads: the concept
of super-absorbing fullerenes .................. 571
4.3.4 Incorporation of C60-PDI dyads in bulk-
heterojunction ................................. 579
4.4 Association of perylene-3,4-mono(dicarboximide)
with C60 .............................................. 582
5 Conclusions and Outlook .................................... 583
Acknowledgments ............................................ 584
References ................................................. 584
18 Fullerenes for Photoelectrochemical and Photovoltaic
Devices .................................................... 593
Hiroshi Imahori and Tomokazu Umeyama
1 Introduction ............................................... 594
2 Langmuir-Blodgett (LB) films ............................... 595
3 Self-Assembled Monolayers (SAMs) ........................... 596
3.1 Self-assembled monolayers on gold electrodes .......... 596
3.2 Self-assembled monolayers on indium tin oxide (ITO)
electrodes ............................................ 601
4 Layer-by-Layer Deposition .................................. 605
5 Vacuum Deposition .......................................... 608
6 Electrochemical Deposition ................................. 608
6.1 Fullerenes and their derivatives ...................... 608
6.2 Covalently linked donor-fullerene systems ............. 609
6.3 Noncovalently linked donor-fullerene systems .......... 610
6.4 Роrphyrin-fullerene composite systems ................. 613
6.5 Carbon nanotube-fullerene composite systems ........... 618
7 Chemical Adsorption and Spin-Coating Deposition ............ 620
7.1 Solution-processed bulk-heterojunction solar cells .... 620
7.2 Hydrogen-bonding systems .............................. 622
7.3 Coordination bonding systems .......................... 627
8 Conclusion ................................................. 628
References ................................................. 629
19 Fullerenes as Photosensitizers in Photorefractive
Materials .................................................. 637
Ángela Sastre-Santos, Luis Martín-Gomis and Fernando
Fernández-Lázaro
1 Fundamentals of Photorefractivity .......................... 638
1.1. Photorefractivity in organic materials ................ 640
2 Measurement Techniques ..................................... 641
2.1 Two-beam coupling - a simple test for
photorefractivity ..................................... 641
2.2 Four-wave mixing measurements ......................... 643
3 Photorefractive Materials .................................. 644
3.1 The photosensitizer ................................... 646
3.2 The photoconductor .................................... 648
3.3 The NLOphore .......................................... 649
3.4 The trap .............................................. 650
4 Pristine [60]Fullerene or [60]Fullerene-[70]Fullerene
Mixtures as Photosensitizers in PR Materials ............... 651
5 [60]Fullerene Derivatives as Photosensitizers in PR
Materials .................................................. 655
5.1 [6,6]-PCBM as photosensitizer ......................... 657
5.2 C60-based dyads as photosensitizers ................... 658
6 Conclusions and Perspectives ............................... 664
Acknowledgments ............................................ 664
References ................................................. 664
20 Functionalized Fullerene Derivatives in Organic
Molecular Electronics ...................................... 667
Mateusz Wielopolski, Auvelio Mateo-Alonso and Dirk
M. Guldi
1 Introduction ............................................... 667
2 Chemical Functionalization of Fullerenes ................... 669
3 Molecular Machines ......................................... 670
4 Molecular Wires ............................................ 675
5 Molecular Photoelectrochemistry ............................ 682
6 Conclusion and Outlook ..................................... 689
References ................................................. 690
21 Preparation, Properties, and Application of Polymer
Composites of Carbon Nanotubes ............................. 693
Piotr Pieta, Francis D'Souza and Wlodzimierz Kutner
1 Introduction ............................................... 697
2 Preparation of the CNT/polymer composites .................. 700
2.1 Mixing of CNTs and polymers in a solvent solution
(solution processing) ................................. 703
2.2 Melting of polymers in the presence of CNTs ........... 706
2.3 Chemical polymerization ............................... 708
2.4 Electrochemical polymerization ........................ 711
2.5 Co-deposition of conducting polymers and CNTs by
electropolymerization ................................. 716
3 Selected properties of the CNTs/polymer composites ......... 722
3.1 Electric conductivity ................................. 722
3.2 Electrochemical properties ............................ 724
3.3 Mechanical properties ................................. 729
3.4 Thermal stability ..................................... 730
4 Prospective Applications ................................... 732
4.1 Photovoltaic devices .................................. 732
4.2 Chemical and biochemical sensors ...................... 733
4.3 Electrochemical capacitors ............................ 735
4.4 Other foreseeable applications ........................ 737
5 Conclusions ................................................ 741
6 Summary and Perspectives ................................... 742
Acknowledgments ............................................ 743
References ................................................. 743
22 Thermal Conductive Materials Based on Carbon Nanotubes
and Graphene Nanosheets .................................... 755
L. Monica Veca, Wei Wang, Yi Lin, Mohammed J. Meziani,
Leilei Tian, John W. Connel, Sayata Ghose, Chang Yi
Kong and Ya-Ping Sun
1 Background ................................................. 756
2 Carbon Nanotubes ........................................... 756
2.1 Individual CNTs ....................................... 757
2.2 Bulk CNTs ............................................. 761
3 Polymeric/Nanotube Composites .............................. 765
3.1 Thermoplastics ........................................ 767
3.2 Elastomers ............................................ 770
3.3 Thermosets ............................................ 772
3.4 Effects of nanotube functionalization ................. 776
4 Graphene Nanosheets ........................................ 778
4.1. Polymeric/GN composites ............................... 779
5 Conclusions and Perspectives ............................... 784
Acknowledgments ............................................ 784
References ................................................. 784
23 Electronic Properties of DNA-SWNT Hybrids: From Charge
Separation to Optical Sensing .............................. 787
Slava V. Rotkin
1 Introduction ............................................... 788
2 Symmetry Breaking: Qualitative Predictions for Optics ...... 790
2.1 Metallic SWNT: Band gap opening and metal-
semiconductor transition .............................. 790
2.2 Semiconductor SWNT: Appearance of new absorption
lines in circular polarization ........................ 794
2.3 Analytical theory of the symmetry breaking: Rigorous
analysis for armchair SWNTs ........................... 798
2.4 Numerical modeling of the hybrids: Tight binding
bandstructure calculations ............................ 805
2.5 Self-consistent computation scheme: Acting
potential ............................................. 810
2.6 Charge separation, screening factor and dielectric
permittivity .......................................... 812
2.7 Optical absorption/photoluminescence maps of
DNA/SWNT hybrids ...................................... 814
2.8 Circular dichroism of DNA/SWNT hybrids ................ 815
3 Summary and Perspectives ................................... 819
Acknowledgments ............................................ 820
References ................................................. 821
Cumulative Index of Volumes 1 and 2 ........................... 825
|