Genetic algorithms and genetic programming: modern concepts and practical applications (Boca Raton, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGenetic algorithms and genetic programming: modern concepts and practical applications / M.Affenzeller et al. - Boca Raton: Chapman & Hall/CRC, 2009. - xxvii, 365 p.: ill. - (Numerical insights; vol.6). - Ref.: p.327-358. - Ind.: p.359-365. - ISBN 978-1-58488-629-7
 

Оглавление / Contents
 
List of Tables ................................................. xi
List of Figures ................................................ xv
List of Algorithms .......................................... xxiii
Introduction .................................................. xxv

1  Simulating Evolution: Basics about Genetic Algorithms ........ 1
   1.1  The Evolution of Evolutionary Computation ............... 1
   1.2  The Basics of Genetic Algorithms ........................ 2
   1.3  Biological Terminology .................................. 3
   1.4  Genetic Operators ....................................... 6
        1.4.1  Models for Parent Selection ...................... 6
        1.4.2  Recombination (Crossover) ........................ 7
        1.4.3  Mutation ......................................... 9
        1.4.4  Replacement Schemes .............................. 9
   1.5  Problem Representation ................................. 10
        1.5.1  Binary Representation ........................... 11
        1.5.2  Adjacency Representation ........................ 12
        1.5.3  Path Representation ............................. 13
        1.5.4  Other Representations for Combinatorial
               Optimization Problems ........................... 13
        1.5.5  Problem Representations for Real-Valued
               Encoding ........................................ 14
   1.6  GA Theory: Schemata and Building Blocks ................ 14
   1.7  Parallel Genetic Algorithms ............................ 17
        1.7.1  Global Parallelization .......................... 18
        1.7.2  Coarse-Grained Parallel GAs ..................... 19
        1.7.3  Fine-Grained Parallel GAs ....................... 20
        1.7.4  Migration ....................................... 21
   1.8  The Interplay of Genetic Operators ..................... 22
   1.9  Bibliographic Remarks .................................. 23
2  Evolving Programs: Genetic Programming ...................... 25
   2.1  Introduction: Main Ideas and Historical Background ..... 26
   2.2  Chromosome Representation .............................. 28
        2.2.1  Hierarchical Labeled Structure Trees ............ 28
        2.2.2  Automatically Defined Functions and Modular
               Genetic Programming ............................. 35
        2.2.3  Other Representations ........................... 36
   2.3  Basic Steps of the GP-Based Problem Solving Process .... 37
        2.3.1  Preparatory Steps ............................... 37
        2.3.2  Initialization .................................. 39
        2.3.3  Breeding Populations of Programs ................ 39
        2.3.4  Process Termination and Results Designation ..... 41
   2.4  Typical Applications of Genetic Programming ............ 43
        2.4.1  Automated Learning of Multiplexer Functions ..... 43
        2.4.2  The Artificial Ant .............................. 44
        2.4.3  Symbolic Regression ............................. 46
        2.4.4  Other GP Applications ........................... 49
   2.5  GP Schema Theories ..................................... 50
        2.5.1  Program Component GP Schemata ................... 51
        2.5.2  Rooted Tree GP Schema Theories .................. 52
        2.5.3  Exact GP Schema Theory .......................... 54
        2.5.4  Summary ......................................... 59
   2.6  Current GP Challenges and Research Areas ............... 59
   2.7  Conclusion ............................................. 62
   2.8  Bibliographic Remarks .................................. 62
3  Problems and Success Factors ................................ 65
   3.1  What Makes GAs and GP Unique among Intelligent
        Optimization Methods? .................................. 65
   3.2  Stagnation and Premature Convergence ................... 66
4  Preservation of Relevant Building Blocks .................... 69
   4.1  What Can Extended Selection Concepts Do to Avoid

        Premature Convergence? ................................. 69
   4.2  Offspring Selection (OS) ............................... 70
   4.3  The Relevant Alleles Preserving Genetic Algorithm
        (RAPGA) ................................................ 73
   4.4  Consequences Arising out of Offspring Selection and
        RAPGA .................................................. 76
5  SASEGASA - More than the Sum of All Parts ................... 79
   5.1  The Interplay of Distributed Search and Systematic
        Recovery of Essential Genetic Information .............. 80
   5.2  Migration Revisited .................................... 81
   5.3  SASEGASA: A Novel and Self-Adaptive Parallel Genetic
        Algorithm .............................................. 82
        5.3.1  The Core Algorithm .............................. 83
   5.4  Interactions among Genetic Drift, Migration, and
        Self-Adaptive Selection Pressure ....................... 86
6  Analysis of Population Dynamics ............................. 89
   6.1  Parent Analysis ........................................ 89
   6.2  Genetic Diversity ...................................... 90
        6.2.1  In Single-Population GAs ........................ 90
        6.2.2  In Multi-Population GAs ......................... 91
        6.2.3  Application Examples ............................ 92
7  Characteristics of Offspring Selection and the RAPGA ........ 97
   7.1  Introduction ........................................... 97
   7.2  Building Block Analysis for Standard GAs ............... 98
   7.3  Building Block Analysis for GAs Using Offspring
        Selection ............................................. 103
   7.4  Building Block Analysis for the Relevant Alleles
        Preserving GA (RAPGA) ................................. 113
8  Combinatorial Optimization: Route Planning ................. 121
   8.1  The Traveling Salesman Problem ........................ 121
        8.1.1  Problem Statement and Solution Methodology ..... 122
        8.1.2  Review of Approximation Algorithms and
               Heuristics ..................................... 125
        8.1.3  Multiple Traveling Salesman Problems ........... 130
        8.1.4  Genetic Algorithm Approaches ................... 130
   8.2  The Capacitated Vehicle Routing Problem ............... 139
        8.2.1  Problem Statement and Solution Methodology ..... 140
        8.2.2  Genetic Algorithm Approaches ................... 147
9  Evolutionary System Identification ......................... 157
   9.1  Data-Based Modeling and System Identification ......... 157
        9.1.1  Basics ......................................... 157
        9.1.2  An Example ..................................... 159
        9.1.3  The Basic Steps in System Identification ....... 166
        9.1.4  Data-Based Modeling Using Genetic
               Programming .................................... 169
   9.2  GP-Based System Identification in HeuristicLab ........ 170
        9.2.1  Introduction ................................... 170
        9.2.2  Problem Representation ......................... 171
        9.2.3  The Functions and Terminals Basis .............. 173
        9.2.4  Solution Representation ........................ 178
        9.2.5  Solution Evaluation ............................ 182
   9.3  Local Adaption Embedded in Global Optimization ........ 188
        9.3.1  Parameter Optimization ......................... 189
        9.3.2  Pruning ........................................ 192
   9.4  Similarity Measures for Solution Candidates ........... 197
        9.4.1  Evaluation-Based Similarity Measures ........... 199
        9.4.2  Structural Similarity Measures ................. 201
   viii  Genetic Algorithms and Genetic Programming
10 Applications of Genetic Algorithms: Combinatorial
   Optimization ............................................... 207
   10.1 The Traveling Salesman Problem ........................ 208
        10.1.1 Performance Increase of Results of Different
               Crossover Operators by Means of Offspring
               Selection ...................................... 208
        10.1.2 Scalability of Global Solution Quality by
               SASEGASA ....................................... 210
        10.1.3 Comparison of the SASEGASA to the Island-
               Model Coarse-Grained Parallel GA ............... 214
        10.1.4 Genetic Diversity Analysis for the Different
               GA Types ....................................... 217
   10.2 Capacitated Vehicle Routing ........................... 221
        10.2.1 Results Achieved Using Standard Genetic
               Algorithms ..................................... 222
        10.2.2 Results Achieved Using Genetic Algorithms
               with Offspring Selection ....................... 226
11 Data-Based Modeling with Genetic Programming ............... 235
   11.1 Time Series Analysis .................................. 235
        11.1.1 Time Series Specific Evaluation ................ 236
        11.1.2 Application Example: Design of Virtual
               Sensors for Emissions of Diesel Engines ........ 237
   11.2 Classification ........................................ 251
        11.2.1 Introduction ................................... 251
        11.2.2 Real-Valued Classification with Genetic
               Programming .................................... 251
        11.2.3 Analyzing Classifiers .......................... 252
        11.2.4 Classification Specific Evaluation in GP ....... 258
        11.2.5 Application Example: Medical Data Analysis ..... 263
   11.3 Genetic Propagation ................................... 285
        11.3.1 Test Setup ..................................... 285
        11.3.2 Test Results ................................... 286
        11.3.3 Summary ........................................ 288
        11.3.4 Additional Tests Using Random Parent
               Selection ...................................... 289
   11.4 Single Population Diversity Analysis .................. 292
        11.4.1 GP Test Strategies ............................. 292
        11.4.2 Test Results ................................... 293
        11.4.3 Conclusion ..................................... 297
   11.5 Multi-Population Diversity Analysis ................... 300
        11.5.1 GP Test Strategies ............................. 300
        11.5.2 Test Results ................................... 301
        11.5.3 Discussion ..................................... 303
   11.6 Code Bloat, Pruning, and Population Diversity ......... 306
        11.6.1 Introduction ................................... 306
        11.6.2 Test Strategies ................................ 307
        11.6.3 Test Results ................................... 309
        11.6.4 Conclusion ..................................... 318
   Conclusion and Outlook ..................................... 321

Symbols and Abbreviations ..................................... 325
References .................................................... 327
Index ......................................................... 359


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:06 2019. Размер: 15,171 bytes.
Посещение N 1518 c 23.10.2012