Arora S. Computational complexity: a modern approach (Cambridge, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаArora S. Computational complexity: a modern approach / S.Arora, B.Barak. - Cambridge: Cambridge University Press, 2009. - xxiv, 579 p.: ill. - Bibliogr.: p.549-573. - Ind.: p.575-579. - ISBN 978-0-521-42426-4
 

Оглавление / Contents
 
About this book ............................................... xiu
Acknowledgments .............................................. xvii
Introduction .................................................. xix

0  Notational conventions ....................................... 1
   0.1  Representing objects as strings ......................... 2
   0.2  Decision problems/languages ............................. 3
   0.3  Big-oh notation ......................................... 3
   EXERCISES .................................................... 4

PART ONE: BASIC COMPLEXITY CLASSES .............................. 7

1  The computational model—and why it doesn't matter ............ 9
   1.1  Modeling computation: What you really need to know ..... 10
   1.2  The Turing machine ..................................... 11
   1.3  Efficiency and running time ............................ 15
   1.4  Machines as strings and the universal Turing machine ... 19
   1.5  Uncomputability: An introduction ....................... 21
   1.6  The Class P ............................................ 24
   1.7  Proof of Theorem 1.9: Universal simulation in O(T log
        t)-time ................................................ 29

2  NP and NP completeness ...................................... 38
   2.1  The Class NP............................................ 39
   2.2  Reducibility and NP-completeness ....................... 42
   2.3  The Cook-Levin Theorem: Computation is local ........... 44
   2.4  The web of reductions .................................. 50
   2.5  Decision versus search ................................. 54
   2.6  coNP, EXP, and NEXP .................................... 55
   2.7  More thoughts about P, NP, and all that ................ 57
   CHAPTER NOTES AND HISTORY ................................... 62
   EXERCISES ................................................... 63

3  Diagonalization ............................................. 68
   3.1  Time Hierarchy Theorem ................................. 69
   3.2  Nondeterministic Time Hierarchy Theorem ................ 69
   3.3  Ladner's Theorem: Existence of NP-intermediate
        problems ............................................... 71
   3.4  Oracle machines and the limits of diagonalization ...... 72
   CHAPTER NOTES AND HISTORY ................................... 76
   EXERCISES ................................................... 77

4  Space complexity ............................................ 78
   4.1  Definition of space-bounded computation ................ 78
   4.2  PSPACE completeness .................................... 83
   4.3  NL completeness ........................................ 87
   CHAPTER NOTES AND HISTORY ................................... 93
   EXERCISES ................................................... 93

5  The polynomial hierarchy and alternations ................... 95
   5.1  The Class Σ2p .......................................... 96
   5.2  The polynomial hierarchy ............................... 97
   5.3  Alternating Turing machines ............................ 99
   5.4  Time versus alternations: Time-space tradeoffs for
        SAT ................................................... 101
   5.5  Defining the hierarchy via oracle machines ............ 102
   CHAPTER NOTES AND HISTORY .................................. 104
   EXERCISES .................................................. 104

6  Boolean circuits ........................................... 106
   6.1  Boolean circuits and P/poly ........................... 107
   6.2  Uniformly generated circuits .......................... 111
   6.3  Turing machines that take advice ...................... 112
   6.4  P/poly and NP ......................................... 113
   6.5  Circuit lower bounds .................................. 115
   6.6  Nonuniform Hierarchy Theorem .......................... 116
   6.7  Finer gradations among circuit classes ................ 116
   6.8  Circuits of exponential size .......................... 119
   CHAPTER NOTES AND HISTORY .................................. 120
   EXERCISES .................................................. 121

7  Randomized computation ..................................... 123
   7.1  Probabilistic Turing machines ......................... 124
   7.2  Some examples of PTMs ................................. 126
   7.3  One-sided and "zero-sided" error: RP, coRP, ZPP ....... 131
   7.4  The robustness of our definitions ..................... 132
   7.5  Relationship between BPP and other classes ............ 135
   7.6  Randomized reductions ................................. 138
   7.7  Randomized space-bounded computation .................. 139
   CHAPTER NOTES AND HISTORY .................................. 140
   EXERCISES .................................................. 141

8  Interactive proofs ......................................... 143
   8.1  Interactive proofs: Some variations ................... 144
   8.2  Public coins and AM ................................... 150
   8.3  IP = PSPACE ........................................... 157
   8.4  The power of the prover ............................... 162
   8.5  Multiprover interactive proofs (MIP) .................. 163
   8.6  Program checking ...................................... 164
   8.7  Interactive proof for the permanent ................... 167
   CHAPTER NOTES AND HISTORY .................................. 169
   EXERCISES .................................................. 170

9  Cryptography ............................................... 172
   9.1  Perfect secrecy and its limitations ................... 173
   9.2  Computational security, one-way functions, and 
        pseudorandom generators ............................... 175
   9.3  Pseudorandom generators from one-way permutations ..... 180
   9.4  Zero knowledge ........................................ 186
   9.5  Some applications ..................................... 189
   CHAPTER NOTES AND HISTORY .................................. 194
   EXERCISES .................................................. 197

10 Quantum computation ........................................ 201
   10.1 Quantum weirdness: The two-slit experiment ............ 202
   10.2 Quantum superposition and qubits ...................... 204
   10.3 Definition of quantum computation and BQP ............. 209
   10.4 Grover's search algorithm ............................. 216
   10.5 Simon's algorithm ..................................... 219
   10.6 Shor's algorithm: Integer factorization using 
        quantum computers ..................................... 221
   10.7 BQP and classical complexity classes .................. 230
   CHAPTER NOTES AND HISTORY .................................. 232
   EXERCISES .................................................. 234

11 PCP theorem and hardness of approximation: An 
   introduction ............................................... 237
   11.1 Motivation: Approximate solutions to NP-hard 
        optimization problems ................................. 238
   11.2 Two views of the PCP Theorem .......................... 240
   11.3 Equivalence of the two views .......................... 244
   11.4 Hardness of approximation for vertex cover and 
        independent set ....................................... 247
   11.5NP fig.1 PCP(poly(n), 1): PCP from the Walsh-Hadamard
        code .................................................. 249
   CHAPTER NOTES AND HISTORY .................................. 254
   EXERCISES .................................................. 255
   
PART TWO: LOWER BOUNDS FOR CONCRETE COMPUTATIONAL MODELS ...... 257
   
12 Decision trees ............................................. 259
   12.1 Decision trees and decision tree complexity ........... 259
   12.2 Certificate complexity ................................ 262
   12.3 Randomized decision trees ............................. 263
   12.4 Some techniques for proving decision tree lower
        bounds ................................................ 264
   CHAPTER NOTES AND HISTORY .................................. 268
   EXERCISES .................................................. 269

13 Communication complexity ................................... 270
   13.1 Definition of two-party communication complexity ...... 271
   13.2 Lower bound methods ................................... 272
   13.3 Multiparty communication complexity ................... 278
   13.4 Overview of other communication models ................ 280
   CHAPTER NOTES AND HISTORY .................................. 282
   EXERCISES .................................................. 283

14 Circuit lower bounds: Complexity theory's Waterloo ......... 286
   14.1 AC0 and Håstad's Switching Lemma ...................... 286
   14.2 Circuits with "counters": ACC ......................... 291
   14.3 Lower bounds for monotone circuits .................... 293
   14.4 Circuit complexity: The frontier ...................... 297
   14.5 Approaches using communication complexity ............. 300
   CHAPTER NOTES AND HISTORY .................................. 304
   EXERCISES .................................................. 305

15 Proof complexity ........................................... 307
   15.1 Some examples ......................................... 307
   15.2 Propositional calculus and resolution ................. 309
   15.3 Other proof systems: A tour d'horizon ................. 313
   15.4 Metamathematical musings .............................. 315
   CHAPTER NOTES AND HISTORY .................................. 316
   EXERCISES .................................................. 317

16 Algebraic computation models ............................... 318
   16.1 Algebraic straight-line programs and algebraic
        circuits .............................................. 319
   16.2 Algebraic computation trees ........................... 326
   16.3 The Blum-Shub-Smale model ............................. 331
   CHAPTER NOTES AND HISTORY .................................. 334
   EXERCISES .................................................. 336
   
PART THREE: ADVANCED TOPICS ................................... 339
   
17 Complexity of counting ..................................... 341
   17.1 Examples of counting problems ......................... 342
   17.2 The Class #P .......................................... 344
   17.3 #P completeness ....................................... 345
   17.4 Toda's theorem: PH fig.1 P#SAT ............................ 352
   17.5 Open problems ......................................... 358
   CHAPTER NOTES AND HISTORY .................................. 359
   EXERCISES .................................................. 359

18 Average case complexity: Levin's theory .................... 361
   18.1 Distributional problems and distP ..................... 362
   18.2 Formalization of "real-life distributions" ............ 365
   18.3 distnp and its complete problems ...................... 365
   18.4 Philosophical and practical implications .............. 369
   CHAPTER NOTES AND HISTORY .................................. 371
   EXERCISES .................................................. 371
   
19 Hardness amplification and error-correcting codes .......... 373
   19.1 Mild to strong hardness: Yao's XOR lemma .............. 375
   19.2 Tool: Error-correcting codes .......................... 379
   19.3 Efficient decoding .................................... 385
   19.4 Local decoding and hardness amplification ............. 386
   19.5 List decoding ......................................... 392
   19.6 Local list decoding: Getting to BPP = P ............... 394
   CHAPTER NOTES AND HISTORY .................................. 398
   EXERCISES .................................................. 399
   
20 Derandomization ............................................ 402
   20.1 Pseudorandom generators and derandomization ........... 403
   20.2 Proof of Theorem 20.6: Nisan-Wigderson Construction ... 407
   20.3 Derandomization under uniform assumptions ............. 413
   20.4 Derandomization requires circuit lower bounds ......... 415
   CHAPTER NOTES AND HISTORY .................................. 418
   EXERCISES .................................................. 419
   
21 Pseudorandom constructions: Expanders and extractors ....... 421
   21.1 Random walks and eigenvalues .......................... 422
   21.2 Expander graphs ....................................... 426
   21.3 Explicit construction of expander graphs .............. 434
   21.4 Deterministic logspace algorithm for undirected
        connectivity .......................................... 440
   21.5 Weak random sources and extractors .................... 442
   21.6 Pseudorandom generators for space-bounded 
        computation ........................................... 449
   CHAPTER NOTES AND HISTORY .................................. 454
   EXERCISES .................................................. 456
   
22 Proofs of PCP theorems and the Fourier transform 
   technique .................................................. 460
   22.1 Constraint satisfaction problems with nonbinary
        alphabet .............................................. 461
   22.2 Proof of the PCP theorem .............................. 461
   22.3 Hardness of 2CSPW: Tradeoff between gap and alphabet
        size .................................................. 472
   22.4 Hastad's 3-bit PCP Theorem and hardness of MAX-3SAT ... 474
   22.5 Tool: The Fourier transform technique ................. 475
   22.6 Coordinate functions, long Code, and its testing ...... 480
   22.7 Proof of Theorem 22.16 ................................ 481
   22.8 Hardness of approximating SET-COVER ................... 486
   22.9 Other PCP theorems: A survey .......................... 488
   22.A Transforming qCSP instances into "nice" instances ..... 491
   CHAPTER NOTES AND HISTORY .................................. 493
   EXERCISES .................................................. 495
   
23 Why are circuit lower bounds so difficult? ................. 498
   23.1 Definition of natural proofs .......................... 499
   23.2 What's so natural about natural proofs? ............... 500
   23.3 Proof of Theorem 23.1 ................................. 503
   23.4 An "unnatural" lower bound ............................ 504
   23.5 A philosophical view .................................. 505
   CHAPTER NOTES AND HISTORY .................................. 506
   EXERCISES .................................................. 507

Appendix: Mathematical background.............................. 508
   A.l  Sets, functions, pairs, strings, graphs, logic ........ 509
   A.2  Probability theory .................................... 510
   A.3  Number theory and groups .............................. 517
   A.4  Finite fields ......................................... 521
   A.5  Basic facts from linear Algebra ....................... 522
   A.6  Polynomials ........................................... 527

Hints and selected exercises .................................. 531
Main theorems and definitions ................................. 545
Bibliography .................................................. 549
Index ......................................................... 575
Complexity class index ........................................ 579


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:04 2019. Размер: 19,923 bytes.
Посещение N 1619 c 23.10.2012