Allard J.-F. Propagation of sound in porous media: modelling sound absorbing materials (Chichester, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAllard J.-F. Propagation of sound in porous media: modelling sound absorbing materials / J.F.Allard, N.Atalla. - 2nd ed. - Chichester: Wiley, 2009. - xiv, 358 p.: ill. - Incl. bibl. ref. - Ind.: p.351-358. - ISBN 978-04-7074-661-5
 

Оглавление / Contents
 
Preface to the second edition ................................ xiii
1  Plane waves in isotropic fluids and solids ................... 1
   1.1  Introduction ............................................ 1
   1.2  Notation - vector operators ............................. 1
   1.3  Strain in a deformable medium ........................... 2
   1.4  Stress in a deformable medium ........................... 4
   1.5  Stress-strain relations for an isotropic elastic
        medium .................................................. 5
   1.6  Equations of motion ..................................... 8
   1.7  Wave equation in a fluid ............................... 10
   1.8  Wave equations in an elastic solid ..................... 11
   References .................................................. 13
2  Acoustic impedance at normal incidence of fluids.
   Substitution of a fluid layer for a porous layer ............ 15
   2.1  Introduction ........................................... 15
   2.2  Plane waves in unbounded fluids ........................ 15
        2.2.1  Travelling waves ................................ 15
        2.2.2  Example ......................................... 16
        2.2.3  Attenuation ..................................... 16
        2.2.4  Superposition of two waves propagating in
               opposite directions ............................. 17
   2.3  Main properties of impedance at normal incidence ....... 17
        2.3.1  Impedance variation along a direction of
               propagation ..................................... 17
        2.3.2  Impedance at normal incidence of a layer of
               fluid backed by an impervious rigid wall ........ 18
        2.3.3  Impedance at normal incidence of a
               multilayered fluid .............................. 19
   2.4  Reflection coefficient and absorption coefficient at
        normal incidence ....................................... 19
        2.4.1  Reflection coefficient .......................... 19
        2.4.2  Absorption coefficient .......................... 20
   2.5  Fluids equivalent to porous materials: the laws of
        Delany and Bazley ...................................... 20
        2.5.1  Porosity and flow resistivity in porous
               materials ....................................... 20
        2.5.2  Microscopic and macroscopic description of
               sound propagation in porous media ............... 22
        2.5.3  The Laws of Delany and Bazley and flow
               resistivity ..................................... 22
   2.6  Examples ............................................... 23
   2.7  The complex exponential representation ................. 26
   References .................................................. 26
3  Acoustic impedance at oblique incidence in fluids.
   Substitution of a fluid layer for a porous layer ............ 29
   3.1  Introduction ........................................... 29
   3.2  Inhomogeneous plane waves in isotropic fluids .......... 29
   3.3  Reflection and refraction at oblique incidence ......... 31
   3.4  Impedance at oblique incidence in isotropic fluids ..... 33
        3.4.1  Impedance variation along a direction
               perpendicular to an impedance plane ............. 33
        3.4.2  Impedance at oblique incidence for a layer of
               finite thickness backed by an impervious rigid
               wall ............................................ 34
        3.4.3  Impedance at oblique incidence in a
               multilayered fluid .............................. 35
   3.5  Reflection coefficient and absorption coefficient at
        oblique incidence ...................................... 36
   3.6  Examples ............................................... 37
   3.7  Plane waves in fluids equivalent to transversely
        isotropic porous media ................................. 39
   3.8  Impedance at oblique incidence at the surface of
        a fluid equivalent to an anisotropic porous material ... 41
   3.9  Example ................................................ 43
   References .................................................. 43
4  Sound propagation in cylindrical tubes and porous
   materials having cylindrical pores .......................... 45
   4.1  Introduction ........................................... 45
   4.2  Viscosity effects ...................................... 45
   4.3  Thermal effects ........................................ 50
   4.4  Effective density and bulk modulus for cylindrical
        tubes having triangular, rectangular and hexagonal
        cross-sections ......................................... 54
   4.5  High- and low-frequency approximation .................. 55
   4.6  Evaluation of the effective density and the bulk
        modulus of the air in layers of porous materials with
        identical pores perpendicular to the surface ........... 57
        4.6.1  Effective density and bulk modulus in
               cylindrical pores having a circular cross-
               section ......................................... 57
        4.6.2  Effective density and bulk modulus in slits ..... 59
        4.6.3  High-and low-frequency limits of the effective
               density and the bulk modulus for pores of
               arbitrary cross-sectional shape ................. 60
   4.7  The Biot model for rigid framed materials .............. 61
        4.7.1  Similarity between Gс and Gs .................... 61
        4.7.2  Bulk modulus of the air in slits ................ 62
        4.7.3  Effective density and bulk modulus of air in
               cylindrical pores of arbitrary cross-sectional
               shape ........................................... 64
   4.8  Impedance of a layer with identical pores
        perpendicular to the surface ........................... 65
        4.8.1  Normal incidence ................................ 65
        4.8.2  Oblique incidence - locally reacting
               materials ....................................... 67
   4.9  Tortuosity and flow resistivity in a simple
        anisotropic material ................................... 67
   4.10 Impedance at normal incidence and sound propagation
        in oblique pores ....................................... 69
        4.10.1 Effective density ............................... 69
        4.10.2 Impedance ....................................... 71
   Appendix 4.A Important expressions .......................... 71
                Description on the microscopic scale ........... 71
                Effective density and bulk modulus ............. 71
   References .................................................. 72
5  Sound propagation in porous materials having a rigid
   frame ....................................................... 73
   5.1  Introduction ........................................... 73
   5.2  Viscous and thermal dynamic and static permeability .... 74
        5.2.1  Definitions ..................................... 74
        5.2.2  Direct measurement of the static
               permeabilities .................................. 76
   5.3  Classical tortuosity, characteristic dimensions,
        quasi-static tortuosity ................................ 78
        5.5.7  Classical tortuosity ............................ 78
        5.3.2  Viscous characteristic length ................... 79
        5.3.3  Thermal characteristic length ................... 80
        5.3.4  Characteristic lengths for fibrous materials .... 80
        5.3.5  Direct measurement of the high-frequency
               parameters, classical tortuosity and
               characteristic lengths .......................... 81
        5.3.6  Static tortuosity ............................... 82
   5.4  Models for the effective density and the bulk modulus
        of the saturating fluid ................................ 83
        5.4.1  Pride et al. model for the effective density .... 83
        5.4.2  Simplified Lafarge model for the bulk modulus ... 83
   5.5  Simpler models ......................................... 84
        5.5.1  The Johnson et al. model ........................ 84
        5.5.2  The Champoux-Allard model ....................... 84
        5.5.3  The Wilson model ................................ 85
        5.5.4  Prediction of the effective density with the
               Pride et al. model and the model by Johnson
               et al. .......................................... 85
        5.5.5  Prediction of the bulk modulus with the
               simplified Lafarge model and the Champoux-
               Allard model .................................... 85
        5.5.6  Prediction of the surface impedance ............. 87
   5.6  Prediction of the effective density and the bulk
        modulus of open cell foams and fibrous materials with
        the different models ................................... 88
        5.6.1  Comparison of the performance of different
               models .......................................... 88
        5.6.2  Practical considerations ........................ 88
   5.7  Fluid layer equivalent to a porous layer ............... 89
   5.8  Summary of the semi-phenomenological models ............ 90
   5.9  Homogenization ......................................... 91
   5.10 Double porosity media .................................. 95
        5.10.1 Definitions ..................................... 95
        5.10.2 Orders of magnitude for realistic double
               porosity media .................................. 96
        5.10.3 Asymptotic development method for double
               porosity media .................................. 97
        5.10.4 Low permeability contrast ....................... 98
        5.10.5 High permeability contrast ...................... 99
        5.10.6 Practical considerations ....................... 102
   Appendix 5.A: Simplified calculation of the tortuosity
        for a porous material having pores made up of an
        alternating sequence of cylinders ..................... 103
   Appendix 5.B: Calculation of the characteristic length Λ ... 104
   Appendix 5.C: Calculation of the characteristic length Λ
        for a cylinder perpendicular to the direction of
        propagation ........................................... 106
   References ................................................. 107
6  Biot theory of sound propagation in porous materials
   having an elastic frame .................................... 111
   6.1  Introduction .......................................... 111
   6.2  Stress and strain in porous materials ................. 111
        6.2.1  Stress ......................................... 111
        6.2.2  Stress-strain relations in the Biot theory:
               The potential coupling term .................... 112
        6.2.3  A simple example ............................... 115
        6.2.4  Determination of P, Q and R .................... 116
        6.2.5  Comparison with previous models of sound
               propagation in porous sound-absorbing
               materials ...................................... 117
   6.3  Inertial forces in the Biot theory .................... 117
   6.4  Wave equations ........................................ 119
   6.5  The two compressional waves and the shear wave ........ 120
        6.5.1  The two compressional waves .................... 120
        6.5.2  The shear wave ................................. 122
        6.5.3  The three Biot waves in ordinary air-
               saturated porous materials ..................... 123
        6.5.4  Example ........................................ 123
   6.6  Prediction of surface impedance at normal incidence
        for a layer of porous material backed by an
        impervious rigid wall ................................. 126
        6.6.1  Introduction ................................... 126
        6.6.2  Prediction of the surface impedance at normal
               incidence ...................................... 126
        6.6.3  Example: Fibrous material ...................... 129
   Appendix 6.A: Other representations of the Biot theory ..... 131
   References ................................................. 134
7  Point source above rigid framed porous layers .............. 137
   7.1  Introduction .......................................... 137
   7.2  Sommerfeld representation of the monopole field over
        a plane reflecting surface ............................ 137
   7.3  The complex sinθ plane ................................ 139
   7.4  The method of steepest descent (passage path
        method) ............................................... 140
   7.5  Poles of the reflection coefficient ................... 145
        7.5.1  Definitions .................................... 145
        7.5.2  Planes waves associated with the poles ......... 146
        7.5.3  Contribution of a pole to the reflected
               monopole pressure field ........................ 150
   7.6  The pole subtraction method ........................... 151
   7.7  Pole localization ..................................... 153
        7.7.1  Localization from the r dependence of the
               reflected field ................................ 153
        7.7.2  Localization from the vertical dependence of
               the total pressure ............................. 155
   7.8  The modified version of the Chien and Soroka model .... 156
   Appendix 7.A Evaluation of N ............................... 160
   Appendix 7.B Evaluation of pr by the pole subtraction
        method ................................................ 161
   Appendix 7.С From the pole subtraction to the passage
        path: locally reacting surface ........................ 164
   References ................................................. 165
8  Porous frame excitation by point sources in air and by
   stress circular and line sources - modes of air saturated
   porous frames .............................................. 167
   8.1  Introduction .......................................... 167
   8.2  Prediction of the frame displacement .................. 168
        8.2.1  Excitation with a given wave number component
               parallel to the faces .......................... 168
        8.2.2  Circular and line sources ...................... 172
   8.3  Semi-infinite layer - Rayleigh wave ................... 173
   8.4  Layer of finite thickness - modified Rayleigh wave .... 176
   8.5  Layer of finite thickness - modes and resonances ...... 177
        8.5.1  Modes and resonances for an elastic solid
               layer and a poroelastic layer .................. 111
        8.5.2  Excitation of the resonances by a point
               source in air .................................. 179
   Appendix 8.A Coefficients rij and Mi,j ..................... 182
   Appendix 8.B Double Fourier transform and Hankel
       transform .............................................. 183
   Appendix 8.C Rayleigh pole contribution .................... 185
   References ................................................. 185
9  Porous materials with perforated facings ................... 187
   9.1  Introduction .......................................... 187
   9.2  Inertial effect and flow resistance ................... 187
        9.2.1  Inertial effect ................................ 187
   9.1  Calculation of the added mass and the added length .... 188
        9.2.3  Flow resistance ................................ 191
        9.2.4  Apertures having a square cross-section ........ 192
   9.3  Impedance at normal incidence of a layered porous
        material covered by a perforated facing - Helmoltz
        resonator ............................................. 194
        9.3.1  Evaluation of the impedance for the case of
               circular holes ................................. 194
        9.3.2  Evaluation at normal incidence of the
               impedance for the case of square holes ......... 198
        9.3.3  Examples ....................................... 199
        9.3.4  Design of stratified porous materials covered
               by perforated facings .......................... 202
        9.3.5  Helmholtz resonators ........................... 203
   9.4  Impedance at oblique incidence of a layered porous
        material covered by a facing having circular
        perforations .......................................... 205
        9.4.1  Evaluation of the impedance in a hole at the
               boundary surface between the facing and the
               material ....................................... 205
        9.4.2  Evaluation of the external added length at
               oblique incidence .............................. 208
        9.4.3  Evaluation of the impedance of a faced porous
               layer at oblique incidence ..................... 209
        9.4.4  Evaluation of the surface impedance at
               oblique incidence for the case of square
               perforations ................................... 210
   References ................................................. 211
10 Transversally isotropic poroelastic media .................. 213
   10.1 Introduction .......................................... 213
   10.2 Frame in vacuum ....................................... 214
   10.3 Transversally isotropic poroelastic layer ............. 215
        10.3.1 Stress-strain equations ........................ 215
        10.3.2 Wave equations ................................. 216
   10.4 Waves with a given slowness component in the
        symmetry plane ........................................ 217
        10.4.1 General equations .............................. 217
        10.4.2 Waves polarized in a meridian plane ............ 219
        10.4.3 Waves with polarization perpendicular to the
               meridian plane ................................. 219
        10.4.4 Nature of the different waves .................. 219
        10.4.1 Illustration ................................... 220
   10.5 Sound source in air above a layer of finite
        thickness ............................................. 222
        10.5.1 Description of the problems .................... 222
        10.5.2 Plane field in air ............................. 223
        10.5.3 Decoupling of the air wave ..................... 226
   10.6 Mechanical excitation at the surface of the porous
        layer ................................................. 227
   10.7 Symmetry axis different from the normal to the
        surface ............................................... 228
        10.7.1 Prediction of the slowness vector components
               of the different waves ......................... 228
        10.7.2 Slowness vectors when the symmetry axis is
               parallel to the surface ........................ 230
        10.7.3 Description of the different waves ............. 230
   10.8 Rayleigh poles and Rayleigh waves ..................... 232
        10.8.1  Example ....................................... 234
   10.9 Transfer matrix representation of transversally
        isotropic poroelastic media ........................... 236
   Appendix 10.A: Coefficients Ti in Equation (10.46) ......... 238
   Appendix 10.B: Coefficients Ai in Equation (10.97) ......... 239
   References ................................................. 240
11 Modelling multilayered systems with porous materials
   using the transfer matrix method ........................... 243
   11.1 Introduction .......................................... 243
   11.2 Transfer matrix method ................................ 244
        11.2.1  Principle of the method ....................... 244
   11.3 Matrix representation of classical media .............. 244
        11.3.1 Fluid layer .................................... 244
        11.3.2 Solid layer .................................... 245
        11.3.3 Poroelastic layer .............................. 247
        11.3.4 Rigid and limp frame limits .................... 251
        11.3.5 Thin elastic plate ............................. 254
        11.3.6 Impervious screens ............................. 255
        11.3.7 Porous screens and perforated plates ........... 256
        11.3.8 Other media .................................... 256
   11.4 Coupling transfer matrices ............................ 257
        11.4.1 Two layers of the same nature .................. 257
        11.4.2 Interface between layers of different nature ... 258
   11.5 Assembling the global transfer matrix ................. 260
        11.5.1 Hard wall termination condition ................ 261
        11.5.2 Semi-infinite fluid termination condition ...... 261
   11.6 Calculation of the acoustic indicators ................ 263
        11.6.1 Surface impedance, reflection and absorption
               coefficients ................................... 263
        11.6.2 Transmission coefficient and transmission
               loss ........................................... 263
        11.6.3 Piston excitation .............................. 265
   11.7 Applications .......................................... 266
        11.7.1 Materials with porous screens .................. 266
        11.7.2 Materials with impervious screens .............. 271
        11.7.3 Normal incidence sound transmission through
               a plate-porous system .......................... 274
        11.7.4 Diffuse field transmission of a plate-foam
               system ......................................... 275
   Appendix 11.A The elements 7y of the Transfer Matrix T] .... 277
   References ................................................. 280
12 Extensions to the transfer matrix method ................... 283
   12.1 Introduction .......................................... 283
   12.2 Finite size correction for the transmission problem ... 283
        12.2.1 Transmitted power .............................. 283
        12.2.2 Transmission coefficient ....................... 287
   12.3 Finite size correction for the absorption problem ..... 288
        12.3.1 Surface pressure ............................... 288
        12.3.2 Absorption coefficient ......................... 289
        12.3.3 Examples ....................................... 291
   12.4 Point load excitation ................................. 295
        12.4.1 Formulation .................................... 295
        12.4.2 The TMM, SEA and modal methods ................. 297
        12.4.3 Examples ....................................... 298
   12.5 Point source excitation ............................... 303
   12.6 Other applications .................................... 304
   Appendix 12.A: An algorithm to evaluate the geometrical
        radiation impedance ................................... 305
   References ................................................. 306
13 Finite element modelling of poroelastic materials .......... 309
   13.1 Introduction .......................................... 309
   13.2 Displacement based formulations ....................... 310
   13.3 The mixed displacement-pressure formulation ........... 311
   13.4 Coupling conditions ................................... 313
        13.4.1 Poroelastic-elastic coupling condition ......... 313
        13.4.2 Poroelastic—acoustic coupling condition ........ 314
        13.4.3 Poroelastic-poroelastic coupling condition ..... 315
        13.4.4 Poroelastic—impervious screen coupling
               condition ...................................... 315
        13.4.5 Case of an imposed pressure field .............. 316
        13.4.6 Case of an imposed displacement field .......... 317
        13.4.7 Coupling with a semi-infinite waveguide ........ 317
   13.5 Other formulations in terms of mixed variables ........ 320
   13.6 Numerical implementation .............................. 320
   13.7 Dissipated power within a porous medium ............... 323
   13.8 Radiation conditions .................................. 324
   13.9 Examples .............................................. 327
        13.9.1 Normal incidence absorption and transmission
               loss of a foam: finite size effects ............ 327
        13.9.2 Radiation effects of a plate-foam system ....... 329
        13.9.3 Damping effects of a plate-foam system ......... 331
        13.9.4 Diffuse transmission loss of a plate-foam
               system ......................................... 333
        13.9.5 Application to the modelling of double
               porosity materials ............................. 335
        13.9.6 Modelling of smart foams ....................... 339
        13.9.7 An industrial application ...................... 343
   References ................................................. 347

Index ......................................................... 351


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:04 2019. Размер: 29,692 bytes.
Посещение N 1629 c 23.10.2012