Advanced computational materials modeling: from classical to multi-scale techniques (Weinheim, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAdvanced computational materials modeling: from classical to multi-scale techniques / ed. by M.Vaz, Jr., E.A. de Souza Neto, P.A.Muсoz-Rojas. - Weinheim: Wiley-VCH, 2011. - xviii, 431 p.: ill. - Incl. bibl. ref. - Ind.: p.413-431. - ISBN 978-3-527-32479-8
 

Оглавление / Contents
 
   Preface ................................................... XIII
   List of Contributors ........................................ XV
1  Materials Modeling - Challenges and Perspectives ............. 1
   Miguel Vaz Jr., Eduardo A. de Souza Neto, and Pablo Andres
   Munoz-Rojas
   1.1  Introduction ............................................ 1
   1.2  Modeling Challenges and Perspectives .................... 3
        1.2.1  Mechanical Degradation and Failure of Ductile
               Materials ........................................ 3
               1.2.1.1  Remarks ................................. 7
        1.2.2  Modeling of Cellular Structures .................. 8
               1.2.2.1  Remarks ................................ 14
        1.2.3  Multiscale Constitutive Modeling ................ 15
   1.3  Concluding Remarks ..................................... 18
   Acknowledgments ............................................. 19
   References .................................................. 19
2  Local and Nonlocal Modeling of Ductile Damage ............... 23
   José Manuel de Almeida César de Sá, Francisco Manuel
   Andrade Pires, and Filipe Xavier Costa Andrade
   2.1  Introduction ........................................... 23
   2.2  Continuum Damage Mechanics ............................. 25
        2.2.1  Basic Concepts of CDM ........................... 25
        2.2.2  Ductile Plastic Damage .......................... 26
   2.3  Lemaitre's Ductile Damage Model ........................ 27
        2.3.1  Original Model .................................. 27
               2.3.1.1  The Elastic State Potential ............ 28
               2.3.1.2  The Plastic State Potential ............ 29
               2.3.1.3  The Dissipation Potential .............. 29
               2.3.1.4  Evolution of Internal Variables ........ 30
        2.3.2  Principle of Maximum Inelastic Dissipation ...... 31
        2.3.3  Assumptions Behind Lemaitre's Model ............. 32
   2.4  Modified Local Damage Models ........................... 33
        2.4.1  Lemaitre's Simplified Damage Model .............. 33
               2.4.1.1  Constitutive Model ..................... 33
               2.4.1.2  Numerical Implementation ............... 34
        2.4.2  Damage Model with Crack Closure Effect .......... 37
               2.4.2.1  Constitutive Model ..................... 37
               2.4.2.2  Numerical Implementation ............... 40
   2.5  Nonlocal Formulations .................................. 42
        2.5.1  Aspects of Nonlocal Averaging ................... 44
               2.5.1.1  The Averaging Operator ................. 44
               2.5.1.2  Weight Functions ....................... 45
        2.5.2  Classical Nonlocal Models of Integral Type ...... 45
               2.5.2.1  Nonlocal Formulations for Lemaitre's
                        Simplified Model ....................... 46
        2.5.3  Numerical Implementation of Nonlocal Integral
               Models .......................................... 47
               2.5.3.1  Numerical Evaluation of the
                        Averaging Integral ..................... 48
               2.5.3.2  Global Version of the Elastic
                        Predictor/Return Mapping Algorithm ..... 49
   2.6  Numerical Analysis ..................................... 57
        2.6.1  Axisymmetric Analysis of a Notched Specimen ..... 57
        2.6.2  Flat Grooved Plate in Plane Strain .............. 62
        2.6.3  Upsetting of a Tapered Specimen ................. 63
               2.6.3.1  Damage Prediction Using the
                        Lemaitre's Simplified Model ............ 65
               2.6.3.2  Damage Prediction Using the
                        Lemaitre's Model with Crack Closure
                        Effect ................................. 67
   2.7  Concluding Remarks ..................................... 68
   Acknowledgments ............................................. 69
   References .................................................. 69
3  Recent Advances in the Prediction of the Thermal
   Properties of Metallic Hollow Sphere Structures ............. 73
   Thomas Fiedler, Irina V. Belova, Graeme E. Murch, and
   Andreas Óchsner
   3.1  Introduction ........................................... 73
   3.2  Methodology ............................................ 74
        3.2.1  Lattice Monte Carlo Method ...................... 75
        3.2.2  Finite Element Method ........................... 77
               3.2.2.1  Basics of Heat Transfer ................ 77
               3.2.2.2  Weighted Residual Method ............... 77
               3.2.2.3  Discretization and Principal Finite
                        Element Equation ....................... 78
        3.2.3  Numerical Calculation Models .................... 89
   3.3  Finite Element Analysis on Regular Structures .......... 91
   3.4  Finite Element Analysis on Cubic-Symmetric Models ...... 94
   3.5  LMC Analysis of Models of Cross Sections ............... 98
        3.5.1  Modeling ........................................ 98
        3.5.2  Results ........................................ 101
   3.6  Computed Tomography Reconstructions ................... 103
        3.6.1  Computed Tomography ............................ 104
        3.6.2  Numerical Analysis ............................. 104
               3.6.2.1  Microstructure ........................ 105
               3.6.2.2  Mesostructure ......................... 206
        3.6.3  Results ........................................ 206
   3.7  Conclusions ........................................... 108
   References ................................................. 109
4  Computational Homogenization for Localization and
   Damage ..................................................... 111
   Thierry J. Massart, Varvara Kouznetsova, Ron
   H.J. Peerlings, and Marc G.D. Geers
   4.1  Introduction .......................................... 111
        4.1.1  Mechanics Across the Scales .................... 111
        4.1.2  Some Historical Notes on Homogenization ........ 112
        4.1.3  Separation of Scales ........................... 223
        4.1.4  Computational Homogenization and Its
               Application to Damage and Fracture ............. 114
   4.2  Continuous-Continuous Scale Transitions ............... 115
        4.2.1  First-Order Computational Homogenization ....... 115
        4.2.2  Second-Order Computational Homogenization ...... 119
        4.2.3  Application of the Continuous-Continuous
               Homogenization Schemes to Ductile Damage ....... 121
   4.3  Continuous-Discontinuous Scale Transitions ............ 125
        4.3.1  Scale Transitions and RVE for Initially
               Periodic Materials ............................. 126
               4.3.1.1  First-Order Scale Transitions ......... 126
               4.3.1.2  Choice of the Mesoscopic
                        Representative Volume Element ......... 127
               4.3.1.3  Boundary Conditions for the Unit
                        Cell .................................. 128
        4.3.2  Localization of Damage at the Fine and
               Coarse Scales .................................. 129
               4.3.2.1  Fine-Scale Localization - Implicit
                        Gradient Damage ....................... 229
               4.3.2.2  Detection of Coarse-Scale
                        Localization as a Bifurcation into
                        an Inhomogeneous Deformation
                        Pattern ............................... 130
               4.3.2.3  Illustration of the Localization
                        Analysis .............................. 132
               4.3.2.4  Identification and Selection of the
                        Localization Orientation .............. 235
        4.3.3  Localization Band Enhanced Multiscale
               Solution Scheme ................................ 135
               4.3.3.1  Introduction of the Localization
                        Band .................................. 136
               4.3.3.2  Coupled Multiscale Scheme for
                        Localization .......................... 137
        4.3.4  Scale Transition Procedure for Localized
               Behavior ....................................... 139
               4.3.4.1  Multiscale Solution Procedure ......... 139
               4.3.4.2  Causes of Snapback in the Averaged
                        Material Response ..................... 239
               4.3.4.3  Strain Jump Control for Embedded
                        Band Snapback ......................... 240
               4.3.4.4  Dissipation Control for Unit-Cell
                        Snapback .............................. 242
        4.3.5  Solution Strategy and Computational Aspects .... 242
               4.3.5.1  Governing Equations for the
                        Macroscopic and Mesoscopic Solution
                        Procedures ............................ 142
               4.3.5.2  Extraction of Consistent Tangent
                        Stiffness for Unit-Cell Snapback
                        Control ............................... 244
               4.3.5.3  Discretization and Linearization of
                        the Macroscopic Solution Procedure .... 244
               4.3.5.4  Introduction of Localization Bands
                        upon Material Bifurcation ............. 146
        4.3.6  Applications and Discussion .................... 147
               4.3.6.1  Selection of Localized Solutions ...... 147
               4.3.6.2  Mesostructural Snapback in
                        a Tension-Compression Test ............ 149
               4.3.6.3  Size Effect in a Shear-Compression
                        Test .................................. 351
               4.3.6.4  Masonry Shear Wall Test ............... 152
   4.4  Closing Remarks ....................................... 159
   References ................................................. 160
5  A Mixed Optimization Approach for Parameter
   Identification Applied to the Curson Damage Model .......... 165
   Pablo Andreś Muñoz-Rojas, Luiz Antonio B. da Cunda,
   Eduardo L. Cardoso, Miguel Vaz Jr., and Guillermo Juan
   Creus
   5.1  Introduction .......................................... 165
   5.2  Gurson Damage Model ................................... 166
        5.2.1  Influence of the Parameter Values on
               Behavior of the Damage Model ................... 171
        5.2.2  Recent Developments and New Trends in the
               Gurson Model ................................... 175
   5.3  Parameter Identification .............................. 177
   5.4  Optimization Methods - Genetic Algorithms and
        Mathematical Programming .............................. 179
        5.4.1  Genetic Algorithms ............................. 15O
               5.4.1.1  Formulation ........................... 181
               5.4.1.2  Implementation ........................ 184
        5.4.2  Gradient-Based Methods ......................... 184
               5.4.2.1  General Procedure ..................... 184
               5.4.2.2  Sequential Linear Programming
                        (SLP) ................................. 185
               5.4.2.3  Globally Convergent Method of
                        Moving Asymptotes (GCMM A) ............ 185
   5.5  Sensitivity Analysis .................................. 187
        5.5.1  Modified Finite Differences and the
               Semianalytical Method .......................... 188
   5.6  A Mixed Optimization Approach ......................... 192
   5.7  Examples of Application ............................... 292
        5.7.1  Low Carbon Steel at 25°C ....................... 292
        5.7.2  Aluminum Alloy at 400°C ........................ 297
   5.8  Concluding Remarks .................................... 200
   Acknowledgments ............................................ 200
   References ................................................. 202
6  Semisolid Metallic Alloys Constitutive Modeling for the
   Simulation of Thixoforming Processes ....................... 205
   Roxane Koeune and Jean-Philippe Ponthot
   6.1  Introduction .......................................... 205
   6.2  Semisolid Metallic Alloys Forming Processes ........... 207
        6.2.1  Thixotropic Semisolid Metallic Alloys .......... 208
        6.2.2  Different Types of Semisolid Processing ........ 209
               6.2.2.1  Production of Spheroidal
                        Microstructure ........................ 210
               6.2.2.2  Reheating ............................. 212
               6.2.2.3  Forming ............................... 213
        6.2.3  Advantages and Disadvantages of Semisolid
               Processing ..................................... 215
   6.3  Rheological Aspects ................................... 216
        6.3.1  Microscopic Point of View ...................... 216
               6.3.1.1  Origins of Thixotropy ................. 216
               6.3.1.2  Transient Behavior .................... 217
               6.3.1.3  Effective Liquid Fraction ............. 222
        6.3.2  Macroscopic Point of View ...................... 222
               6.3.2.1  Temperature Effects ................... 222
               6.3.2.2  Yield Stress .......................... 222
               6.3.2.3  Macrosegregation ...................... 223
   6.4  Numerical Background in Large Deformations ............ 223
        6.4.1  Kinematics in Large Deformations ............... 223
               6.4.1.1  Lagrangian Versus Eulerian
                        Coordinate Systems .................... 223
               6.4.1.2  Deformation Gradient and Strain
                        Rate Tensors .......................... 225
        6.4.2  Finite Deformation Constitutive Theory ......... 225
               6.4.2.1  Principle of Objectivity .............. 225
               6.4.2.2  Different Classes of Materials ........ 226
               6.4.2.3  A Corotational Formulation ............ 228
               6.4.2.4  Linear Elastic Solid Material
                        Model ................................. 229
               6.4.2.5  Linear Newtonian Liquid Material
                        Model ................................. 230
               6.4.2.6  Hypoelastic Solid Material Models ..... 231
               6.4.2.7  Liquid Material Models ................ 236
               6.4.2.8  Comparison of Solid and Liquid
                        Approaches ............................ 236
   6.5  State-of-the-Art in FE-Modeling of Thixotropy ......... 237
        6.5.1  One-Phase Models ............................... 237
               6.5.1.1  Apparent Viscosity Evolution .......... 238
               6.5.1.2  Yield Stress Evolution ................ 243
        6.5.2  Two-Phase Models ............................... 244
               6.5.2.1  Two Coupled Fields .................... 244
               6.5.2.2  Coupling Sources ...................... 245
   6.6  A Detailed One-Phase Model ............................ 246
        6.6.1  Cohesion Degree ................................ 247
        6.6.2  Liquid Fraction ................................ 248
        6.6.3  Viscosity Law .................................. 248
        6.6.4  Yield Stress and Isotropic Hardening ........... 250
   6.7  Numerical Applications ................................ 250
        6.7.1  Test Description ............................... 250
        6.7.2  Results Analysis ............................... 253
               6.7.2.1  First Validation of the Model under
                        Isothermal Conditions ................. 251
               6.7.2.2  Thermomechanical Analysis ............. 252
               6.7.2.3  Residual Stresses Analysis ............ 253
               6.7.2.4  Internal Variables Analysis ........... 253
   6.8  Conclusion ............................................ 254
   References ................................................. 255
7  Modeling of Powder Forming Processes; Application of a
   Three-invariant Cap Plasticity and an Enriched Arbitrary
   Lagrangian-Eulerian FE Method .............................. 257
   Amir R. Khoei
   7.1  Introduction .......................................... 257
   7.2  Three-Invariant Cap Plasticity ........................ 260
        7.2.1  Isotropic and Kinematic Material Functions ..... 262
        7.2.2  Computation of Powder Property Matrix .......... 264
        7.2.3  Model Assessment and Parameter
               Determination .................................. 265
               7.2.3.1  Model Assessment ...................... 265
               7.2.3.2  Parameter Determination ............... 267
   7.3  Arbitrary Lagrangian-Eulerian Formulation ............. 269
        7.3.1  ALE Governing Equations ........................ 270
        7.3.2  Weak Form of ALE Equations ..................... 272
        7.3.3  ALE Finite Element Discretization .............. 273
        7.3.4  Uncoupled ALE Solution ......................... 274
               7.3.4.1  Material (Lagrangian) Phase ........... 275
               7.3.4.2  Smoothing Phase ....................... 276
               7.3.4.3  Convection (Eulerian) Phase ........... 278
        7.3.5  Numerical Modeling of an Automotive
               Component ...................................... 279
   7.4  Enriched ALE Finite Element Method .................... 282
        7.4.1  The Extended-FEM Formulation ................... 283
        7.4.2  An Enriched ALE Finite Element Method .......... 286
               7.4.2.1  Level Set Update ...................... 287
               7.4.2.2  Stress Update and Numerical
                        Integration ........................... 288
        7.4.3  Numerical Modeling of the Coining Test ......... 291
   7.5  Conclusion ............................................ 295
   Acknowledgments ............................................ 295
   References ................................................. 296
8  Functionally Graded Piezoelectric Material Systems -
   A Multiphysics Perspective ................................. 301
   Wilfredo Montealegre Rubio, Sandro Luis Vatanabe,
   Gláucio Hermogenes Paulino, and Emilio Carlos Nelli
   Silva
   8.1  Introduction .......................................... 301
   8.2  Piezoelectricity ...................................... 302
   8.3  Functionally Graded Piezoelectric Materials ........... 304
        8.3.1  Functionally Graded Materials (FGMs) ........... 304
        8.3.2  FGM Concept Applied to Piezoelectric
               Materials ...................................... 306
   8.4  Finite Element Method for Piezoelectric Structures .... 309
        8.4.1  The Variational Formulation for
               Piezoelectric Problems ......................... 309
        8.4.2  The Finite Element Formulation for
               Piezoelectric Problems ......................... 310
        8.4.3  Modeling Graded Piezoelectric Structures by
               Using the FEM .................................. 312
   8.5  Influence of Property Scale in Piezotransducer
        Performance ........................................... 314
        8.5.1  Graded Piezotransducers in Ultrasonic
               Applications ................................... 314
        8.5.2  Further Consideration of the Influence of
               Property Scale: Optimal Material Gradation
               Functions ...................................... 319
   8.6  Influence of Microscale ............................... 322
        8.6.1  Performance Characteristics of
               Piezocomposite Materials ....................... 326
               8.6.1.1  Low-Frequency Applications ............ 326
               8.6.1.2  High-Frequency Applications ........... 328
        8.6.2  Homogenization Method .......................... 328
        8.6.3  Examples ....................................... 332
   8.7  Conclusion ............................................ 335
   Acknowledgments ............................................ 335
   References ................................................. 336
9  Variational Foundations of Large Strain Multiscale Solid
   Constitutive Models: Kinematical Formulation ............... 341
   Eduardo A. de Souza Neto and Raúl A. Feijóo
   9.1  Introduction .......................................... 341
   9.2  Large Strain Multiscale Constitutive Theory:
        Axiomatic Structure ................................... 343
        9.2.1  Deformation Gradient Averaging and RVE
               Kinematics ..................................... 346
               9.2.1.1  Consequence: Minimum RVE
                        Kinematical Constraints ............... 346
               9.2.1.2  Minimum Constraint on Displacement
                        Fluctuations .......................... 347
        9.2.2  Actual Constraints: Spaces of RVE Velocities
               and Virtual Displacements ...................... 348
        9.2.3  Equilibrium of the RVE ......................... 349
               9.2.3.1  Strong Form of Equilibrium ............ 350
               9.2.3.2  Solid-Void/Pore Interaction ........... 350
        9.2.4  Stress Averaging Relation ...................... 351
               9.2.4.1  Macroscopic Stress in Terms of RVE
                        Boundary Tractions and Body Forces .... 351
        9.2.5  The Hill-Mandel Principle of
               Macrohomogeneity ............................... 352
   9.3  The Multiscale Model Definition ....................... 353
        9.3.1  The Microscopic Equilibrium Problem ............ 354
        9.3.2  The Multiscale Model: Well-Posed Equilibrium
               Problem ........................................ 354
   9.4  Specific Classes of Multiscale Models: The Choice
        of νμ ................................................. 356
        9.4.1  Taylor Model ................................... 356
               9.4.1.1  The Taylor-Based Constitutive
                        Functional: the Rule of Mixtures ...... 357
        9.4.2  Linear RVE Boundary Displacement Model ......... 359
        9.4.3  Periodic Boundary Displacement Fluctuations 
               Model .......................................... 359
        9.4.4  Minimum Kinematical Constraint: Uniform
               Boundary Traction .............................. 360
   9.5  Models with Stress Averaging in the Deformed RVE
        Configuration ......................................... 361
   9.6  Problem Linearization: The Constitutive Tangent
        Operator .............................................. 362
        9.6.1  Homogenized Constitutive Functional ............ 363
        9.6.2  The Homogenized Tangent Constitutive
               Operator ....................................... 364
   9.7  Time-Discrete Multiscale Models ....................... 366
        9.7.1  The Incremental Equilibrium Problem ............ 367
        9.7.2  The Homogenized Incremental Constitutive
               Function ....................................... 367
        9.7.3  Time-Discrete Homogenized Constitutive
               Tangent ........................................ 368
               9.7.3.1  Taylor Model .......................... 369
               9.7.3.2  The General Case ...................... 369
   9.8  The Infinitesimal Strain Theory ....................... 371
   9.9  Concluding Remarks .................................... 372
   Appendix ................................................... 373
   Acknowledgments ............................................ 376
   References ................................................. 376
10 A Homogenization-Based Prediction Method of Macroscopic
   Yield Strength of Polycrystalline Metals Subjected to
   Cold-Working ............................................... 379
   Kenjiro Terada, Ikumu Watanabe, Masayoshi Akiyama,
   Shigemitsu Kimura, and Kouichi Kuroda
   10.1 Introduction .......................................... 379
   10.2 Two-Scale Modeling and Analysis Based on
        Homogenization Theory ................................. 382
        10.2.1 Two-Scale Boundary Value Problem ............... 383
        10.2.2 Micro-Macro Coupling and Decoupling Schemes
               for the Two-Scale BVP .......................... 385
        10.2.3 Method of Evaluating Macroscopic Yield
               Strength after Cold-Working .................... 386
   10.3 Numerical Specimens: Unit Cell Models with Crystal
        Plasticity ............................................ 387
   10.4 Approximate Macroscopic Constitutive Models ........... 390
        10.4.1 Definition of Macroscopic Yield Strength ....... 391
        10.4.2 Macroscopic Yield Strength at the Initial
               State .......................................... 391
        10.4.3 Approximate Macroscopic Constitutive Model ..... 393
        10.4.4 Parameter Identification for Approximate
               Macroscopic Constitutive Model ................. 393
   10.5 Macroscopic Yield Strength after Three-Step Plastic
        Forming ............................................... 395
        10.5.1 Forming Condition .............................. 395
        10.5.2 Two-Scale Analyses with Micro-Macro Coupling
               and Decoupling Schemes ......................... 396
        10.5.3 Evaluation of Macroscopic Yield Strength
               after Three-Step Plastic Forming ............... 398
   10.6 Application for Pilger Rolling of Steel Pipe .......... 401
        10.6.1 Forming Condition .............................. 401
        10.6.2 Decoupled Microscale Analysis .................. 403
        10.6.3 Evaluation of Macroscopic Yield Strength
               after Pilger Rolling Process ................... 406
   10.7 Conclusion ............................................ 408
   References ................................................. 409

   Index ...................................................... 413


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:04 2019. Размер: 30,681 bytes.
Посещение N 1728 c 23.10.2012