| Ramm A.G. Dynamical systems method and applications: theoretical developments and numerical examples / A.G.Ramm, N.S.Hoang. - Hoboken: Wiley, 2012. - xxix, 539 p.: ill., charts. - Ref.: p.525-535. - Ind.: p.537-539. - ISBN 978-1-118-02428-7
|
PART I
1 Introduction ................................................. 3
2 Ill-posed problems .......................................... 11
3 DSM for well-posed problems ................................. 57
4 DSM and linear ill-posed problems ........................... 71
5 Some inequalities ........................................... 93
6 DSM for monotone operators ................................. 133
7 DSM for general nonlinear operator equations ............... 145
8 DSM for operators satisfying a spectral assumption ......... 155
9 DSM in Banach spaces ....................................... 161
10 DSM and Newton-type methods without inversion of the
derivative ................................................. 169
11 DSM and unbounded operators ................................ 177
12 DSM and nonsmooth operators ................................ 181
13 DSM as a theoretical tool .................................. 195
14 DSM and iterative methods .................................. 201
15 Numerical problems arising in applications ................. 213
PART II
16 Solving linear operator equations by a Newton-type DSM ..... 255
17 DSM of gradient type for solving linear operator
equations .................................................. 269
18 DSM for solving linear equations with finite-rank
operators .................................................. 281
19 A discrepancy principle for equations with monotone
continuous operators ....................................... 295
20 DSM of Newton-type for solving operator equations with
minimal smoothness assumptions ............................. 307
21 DSM of gradient type ....................................... 347
22 DSM of simple iteration type ............................... 373
23 DSM for solving nonlinear operator equations in Banach
spaces ..................................................... 409
PART III
24 Solving linear operator equations by the DSM ............... 423
25 Stable solutions of Hammerstein-type integral equations .... 441
26 Inversion of the Laplace transform from the real axis
using an adaptive iterative method ......................... 455
|
|