Kelley C.T. Implicit filtering (Philadelphia, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаKelley C.T. Implicit filtering. - Philadelphia: SIAM, 2011. - xiv, 170 p.: ill. - Bibliogr.: p.157-166. - Ind.: p.167-170. - ISBN 978-1-611971-89-7
 

Оглавление / Contents
 
Preface ........................................................ xi
How to Get the Software ...................................... xiii
I  Preliminaries ................................................ 1
1  Introduction ................................................. 3
   1.1  What Is the Problem? .................................... 3
   1.2  Sampling Methods ........................................ 4
   1.3  When to Use Sampling Methods ............................ 4
   1.4  When to Avoid Sampling Methods .......................... 6
2  Getting Started with imfil.m ................................. 9
   2.1  Computing Environment and Installation .................. 9
   2.2  What imfil.m does ....................................... 9
        2.2.1  Constraints ..................................... 10
        2.2.2  The Budget for the Iteration .................... 11
        2.2.3  The Objective Function .......................... 11
   2.3  Basic Usage ............................................ 12
        2.3.1  Termination ..................................... 12
   2.4  A Very Simple Example .................................. 13
   2.5  Setting Options ........................................ 15
        2.5.1  Nonlinear Least Squares ......................... 16
        2.5.2  Parallel Computing .............................. 17
        2.5.3  Scaling ƒ ....................................... 19
        2.5.4  Changing the Scales ............................. 20
        2.5.5  Looking at the Iteration History ................ 20
        2.5.6  Scale-Aware Functions ........................... 20
   2.6  Passing Data to the Function ........................... 21
3  Notation and Preliminaries .................................. 23
   3.1  Numerical Linear Algebra ............................... 23
        3.1.1  The LU Factorization and Gaussian Elimination ... 24
        3.1.2  The Oholesky Factorization ...................... 24
        3.1.4  Linear Least Squares ............................ 24
   3.2  Preliminaries from Calculus ............................ 20
        3.2.1  The Fundamental Theorem of Calculus and
               Taylor's Theorem ................................ 27
   3.4  Unconstrained and Bound Constrained Optimization ....... 28
   3.4  Necessary and Sufficient Conditions for Opthnality ..... 29
        3.4.1  Unconstrained Problems .......................... 29
        3.4.2  Bound Constrained Problems ...................... 29
   3.5  Steepest Descent and Gradient Projection Algorithms .... 31
        3.5.1  The Method of Steepest Descent .................. 31
        3.5.2  The Gradient Projection Method .................. 34
   3.6  Fast Local Convergence ................................. 38
   3.7  Finite Difference Approximations ....................... 39
   3.8  Quasi-Newton Methods ................................... 43
        3.8.1  Unconstrained Problems .......................... 44
        3.8.2  Projected Quasi-Newton Methods .................. 45
   3.9  Nonlinear Least Squares ................................ 47
        3.9.1  Gauss Newton Iteration .......................... 47
        3.9.2  Projected Gauss Newton Iteration ................ 49
        3.9.4  Levenberg Marquardt Iteration ................... 50
        3.9.4  Projected Levenberg Marquardt Iteration ......... 50

II Algorithms and Theory ....................................... 53

4  The Implicit Filtering Algorithm ............................ 55
   4.1  Coordinate Search ...................................... 55
   4.2  Primitive Implicit Filtering ........................... 59
        4.2.1  The Stencil Gradient ............................ 60
        4.2.2  Implementation of Primitive Implicit
               Filtering ....................................... 61
   4.3  Model Hessians and Bounds .............................. 63
        4.3.1  Quasi-Newton and Gauss Newton model Hessians .... 63
        4.3.2  Bound Constraints and Scaling ................... 64
   4.4 The Implementation in imfil.m ........................... 65
        4.4.1  The Outer Iteration ............................. 65
        4.4.2  The Inner Iteration ............................. 66
        4.4.3  Hidden Constraints .............................. 67
        4.4.4  Explicit Constraints ............................ 68
5  Convergence Theory .......................................... 71
   5.1  Consequences of Stencil Failure ........................ 71
   5.2  Stencil Failure and Coordinate Search .................. 74
   5.3  Positive Spanning Sets and Positive Bases .............. 75
   5.4  A Convergence Theorem for Implicit Filtering ........... 70
   5.5  Convergence Rates ...................................... 78
        5.5.1  Identification of the Binding Constraints ....... 78
        5.5.2  Gauss Newton Iteration .......................... 80
   5.6  Enriched Stencils ...................................... 84

III Software Reference ......................................... 89

6  Using imfil.m ............................................... 91
   6.1  Installation and Testing ............................... 91
   6.2  Input .................................................. 91
        6.2.1 The Initial Iterate .............................. 92
        6.2.2 The Input Function ............................... 92
        6.2.3 The Budget ....................................... 93
        6.2.4 The Bounds ....................................... 93
   6.3  Output and Troubleshooting ............................. 94
        6.3.1  The histout array ............................... 94
        6.3.2  The complete_history Structure .................. 94
        6.3.3  Slow Convergence or No Convergence .............. 95
   6.4  Setting Options ........................................ 95
   6.5  The Inner Iteration .................................... 96
        6.5.1  Scaling ƒ with f scale .......................... 96
        6.5.2  Quasi-Newton Methods for General Problems ....... 97
        6.5.3  Nonlinear Least Squares ......................... 97
        6.5.4  Which Best Point to Take? ....................... 97
        6.5.5  Limiting the Quasi-Newton Step .................. 98
   6.6  Managing and Using the Scales .......................... 98
        6.6.1  Scalestart and Scaledepth ....................... 98
        6.6.2  custom_scales ................................... 99
        6.6.3  Scale-Aware Functions ........................... 99
        6.6.4  Smooth Problems ................................. 99
   6.7  Parallel Computing .................................... 100
   6.8  Passing Data to ƒ ..................................... 100
   6.9  Stencils .............................................. 101
        6.9.1  vstencil ....................................... 101
        6.9.2  random_stencil ................................. 101
   6.10 Terminating the Outer Iteration ....................... 101
        6.10.1 target ......................................... 102
        6.10.2 stencil_delta .................................. 102
        6.10.3 function_delta ................................. 102
        6.10.4 maxfail ........................................ 103
   6.11 Terminating the Inner Iteration ....................... 103
        6.11.1 maxit .......................................... 103
        6.11.2 maxitarm ....................................... 103
        6.11.3 Noise-Aware Functions and the svarmin Option ... 103
        6.11.4 Terminating the Quasi-Newton Iteration with
               termtol ........................................ 104
   6.12 verbose ............................................... 104
7  Advanced Options ........................................... 105
   7.1  Adding New Directions to the Stencil .................. 105
   7.2  The iteration_data Structure .......................... 108
        7.2.1  Internal Scaling and f_internal ................ 108
   7.3  Updating the complete_history Structure ............... 110
   7.4  Testing More Points with the explore Junction
        Option ................................................ 111
        7.4.1  Random Search Example .......................... 112
   7.5  The Executive Function ................................ 116
        7.5.1  Input to the Executive Function ................ 117
        7.5.2  Output from the Executive Function ............. 117
        7.5.3  Levenberg Marquardt Example .................... 118

IV Case Studies ............................................... 119

8  Harmonic Oscillator ........................................ 121
   8.1  Problem Formulation ................................... 121
        8.1.1  Calling imfil.m and Looking at Results ......... 124
   8.2  Parallelism ........................................... 126
        8.2.1  Parallelizing the Serial Code .................. 126
        8.2.2  Looking at the Parallel Results ................ 127
   8.3  Using the scale_aware Option .......................... 129
   8.4  Termination Revisited ................................. 130
        8.4.1  Using function_delta to Terminate the
               Iteration ...................................... 131
        8.4.2  Using the Executive Function ................... 132
9  Hydraulic Capture Problem .................................. 133
   9.1  Problem Formulation ................................... 134
        9.1.1  Saturated Flow Equations ....................... 134
        9.1.2  Objective Function ............................. 135
        9.1.3  Constraints .................................... 136
        9.1.4  Design Variables and Initial Iterate ........... 138
   9.2  MATLAB Codes and MODFLOW .............................. 139
        9.2.1  Working with MODFLOW ........................... 139
   9.3  Results ............................................... 141
10 Water Resources Policy ..................................... 145
   10.1 Problem Formulation ................................... 145
        10.1.1 Objective Function ............................. 146
        10.1.2 Hydrologic Constraints ......................... 140
        10.1.3 Purchasing Decisions ........................... 147
        10.1.4 Evaluating the Objective ....................... 149
        10.1.5 The Reliability and CVaR Constraints ........... 150
   10.2 Objective Function Code ............................... 152
   10.3 Results ............................................... 153
        10.3.1 Hiding the Linear Constraints .................. 153
        10.3.2 Using the add_new_directions Option ............ 155
   Bibliography ............................................... 157

Index ......................................................... 167


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:24:02 2019. Размер: 14,713 bytes.
Посещение N 1458 c 16.10.2012