| High energy density lithium batteries: materials, engineering, applications / ed. by K.E.Aifantis, S.A.Hackney, R.V.Kumar. - Weinheim: Wiley-VCH, 2010. - xvi, 265 p.: ill. (some col.). - Incl. bibl. ref. - Ind.: p.257-265. - ISBN 978-3-527-32407-1
|
Preface ................................................... XIII
List of Contributors ........................................ XV
1 Introduction to Electrochemical Cells ........................ 1
R. Vasant Kumar and Thapanee Sarakonsri
1.1 What are Batteries? ..................................... 1
1.2 Quantities Characterizing Batteries ..................... 3
1.2.1 Voltage .......................................... 4
1.2.2 Electrode Kinetics (Polarization and Cell
Impedance) ....................................... 7
1.2.2.1 Electrical Double Layer ................. 7
1.2.2.2 Rate of Reaction ........................ 8
1.2.2.3 Electrodes Away from Equilibrium ........ 8
1.2.2.4 The Tafel Equation ...................... 8
1.2.2.5 Example: Plotting a Tafel Curve for
a Copper Electrode ...................... 9
1.2.2.6 Other Limiting Factors ................. 11
1.2.2.7 Tafel Curves for a Battery ............. 11
1.2.3 Capacity ........................................ 13
1.2.4 Shelf-Life ...................................... 14
1.2.5 Discharge Curve/Cycle Life ...................... 14
1.2.6 Energy Density .................................. 15
1.2.7 Specific Energy Density ......................... 15
1.2.8 Power Density ................................... 16
1.2.9 Service Life/Temperature Dependence ............. 16
1.3 Primary and Secondary Batteries ........................ 17
1.4 Battery Market ......................................... 19
1.5 Recycling and Safety Issues ............................ 20
References .................................................. 25
2 Primary Batteries ........................................... 27
Thapanee Sarakonsri and R. Vasant Kumar
2.1 Introduction ........................................... 27
2.2 The Early Batteries .................................... 27
2.3 The Zinc/Carbon Cell ................................... 31
2.3.1 The Leclanché Cell ............................. 31
2.3.2 The Gassner Cell ............................... 32
2.3.3 Current Zinc/Carbon Cell ....................... 33
2.3.3.1 Electrochemical Reactions .............. 34
2.3.3.2 Components ............................. 35
2.3.4 Disadvantages ................................... 36
2.4 Alkaline Batteries ..................................... 36
2.4.1 Electrochemical Reactions ....................... 38
2.4.2 Components ...................................... 38
2.4.3 Disadvantages ................................... 39
2.5 Button Batteries ....................................... 40
2.5.1 Mercury Oxide Battery ........................... 40
2.5.2 Zn/Ag2O Battery ................................. 41
2.5.3 Metal-Air Batteries ............................. 42
2.5.3.1 Zn/Air Battery ......................... 44
2.5.3.2 Aluminum/Air Batteries ................. 45
2.6 Li Primary Batteries ................................... 46
2.6.1 Lithium/Thionyl Chloride Batteries .............. 47
2.6.2 Lithium/Sulfur Dioxide Cells .................... 48
2.7 Oxyride Batteries ...................................... 49
2.8 Damage in Primary Batteries ............................ 50
2.9 Conclusions ............................................ 52
References .................................................. 52
3 A Review of Materials and Chemistry for Secondary
Batteries ................................................... 53
R. Vasant Kumar and Thapanee Sarakonsri
3.1 The Lead-Acid Battery .................................. 54
3.1.1 Electrochemical Reactions ....................... 56
3.1.2 Components ...................................... 57
3.1.3 New Components .................................. 60
3.2 The Nickel-Cadmium Battery ............................. 63
3.2.1 Electrochemical Reactions ....................... 65
3.3 Nickel-Metal Hydride (Ni-MH) Batteries ................. 66
3.4 Secondary Alkaline Batteries ........................... 67
3.4.1 Components ...................................... 67
3.5 Secondary Lithium Batteries ............................ 68
3.5.1 Lithium-Ion Batteries ........................... 70
3.5.2 Li-Polymer Batteries ............................ 73
3.5.3 Evaluation of Li Battery Materials and
Chemistry ....................................... 74
3.6 Lithium-Sulfur Batteries ............................... 76
3.7 Conclusions ............................................ 80
References .................................................. 80
4 Current and Potential Applications of Secondary Li
Batteries ................................................... 81
Katerina E. Aifantis and Stephen A. Hackney
4.1 Portable Electronic Devices ............................ 81
4.2 Hybrid and Electric Vehicles ........................... 82
4.3 Medical Applications ................................... 85
4.3.1 Heart Pacemakers ................................ 85
4.3.2 Neurological Pacemakers ......................... 86
4.4 Application of Secondary Li Ion Battery Systems in
Vehicle Technology ..................................... 87
4.4.1 Parallel Connection ............................. 91
4.4.2 Series Connections .............................. 93
4.4.3 Limitations and Safety Issues ................... 97
References ................................................. 100
5 Li-Ion Cathodes: Materials Engineering Through Chemistry ... 103
Stephen A. Hackney
5.1 Energy Density and Thermodynamics ..................... 103
5.2 Materials Chemistry and Engineering of Voltage
Plateau ............................................... 111
5.3 Multitransition Metal Oxide Engineering for Capacity
and Stability ......................................... 119
5.4 Conclusion ............................................ 126
References ................................................. 126
6 Next-Generation Anodes for Secondary Li-Ion Batteries ...... 129
Katerina E. Aifantis
6.1 Introduction .......................................... 129
6.2 Chemical Attack by the Electrolyte .................... 130
6.3 Mechanical Instabilities during Electrochemical
Cycling ............................................... 132
6.4 Nanostructured Anodes ................................. 135
6.5 Thin Film Anodes ...................................... 136
6.5.1 Sn-Based Thin Film Anodes ...................... 136
6.5.2 Si-Based Thin Film Anodes ...................... 137
6.6 Nanofiber/Nanotube/Nanowire Anodes .................... 142
6.6.1 Sn-Based Nanofiber/Nanowire Anodes ............. 142
6.6.2 Si-Nanowire Anodes ............................. 143
6.7 Active/Less Active Nanostructured Anodes .............. 146
6.7.1 Sn-Based Active/Less Active Anodes ............. 146
6.7.1.1 Sn-Sb Alloys .......................... 146
6.7.1.2 SnS2 Nanoplates ....................... 148
6.7.1.3 Sn-C Nanocomposites ................... 149
6.7.2 Si-Based Active/Less Active Nanocomposites ..... 151
6.7.2.1 Si-SiO2-C Composites .................. 151
6.7.2.2 Si-C Nanocomposites ................... 153
6.8 Other Anode Materials ................................. 157
6.8.1 Sb-Based Anodes ................................ 157
6.8.2 Al-Based Anodes ................................ 158
6.8.3 Bi-Based Anodes ................................ 160
6.9 Conclusions ........................................... 162
References ................................................. 162
7 Next-Generation Electrolytes for Li Batteries .............. 165
Soo-Jin Park, Min-Kang Seo, and Seok Kim
7.1 Introduction .......................................... 165
7.2 Background ............................................ 170
7.2.1 Li-Ion Liquid Electrolytes ..................... 170
7.2.2 Why Polymer Electrolytes? ...................... 172
7.2.3 Metal Ion Salts for Polymer Electrolytes ....... 173
7.3 Preparation and Characterization of Polymer
Electrolytes .......................................... 174
7.3.1 Preparation of Polymer Electrolytes ............ 175
7.3.1.1 Molten-Salt-Containing Polymer Gel
Electrolytes .......................... 175
7.3.1.2 Organic-Modified MMT-Containing
Polymer Composite Electrolytes ........ 175
7.3.1.3 Ion-Exchanged Li-MMT-Containing
Polymer Composite Electrolytes ........ 175
7.3.1.4 Mesoporous Silicate (MCM-41)-
Containing Polymer Composite
Electrolytes .......................... 176
7.3.2 Characterization of Molten-Salt-Containing
Polymer Gel Electrolytes ....................... 176
7.3.2.1 Morphologies and Structural
Properties ............................ 176
7.3.2.2 Thermal Properties .................... 178
7.3.2.3 Electrochemical Properties ............ 180
7.3.3 Characterization of Organic-Modified MMT-
Containing Polymer Composite Electrolytes ...... 185
7.3.3.1 Morphologies and Structural
Properties ............................ 185
7.3.3.2 Thermal Properties .................... 188
7.3.3.3 Electrochemical Properties ............ 189
7.3.4 Ion-Exchanged Li-MMT-Containing Polymer
Composite Electrolytes ......................... 191
7.3.4.1 Structural Properties ................. 191
7.3.4.2 Thermal Properties .................... 192
7.3.4.3 Electrochemical Properties ............ 193
7.3.5 Mesoporous Silicate (MCM-41)-Containing
Polymer Composite Electrolytes ................. 197
7.3.5.1 Morphologies and Structural
Properties ............................ 197
7.3.5.2 Thermal Properties .................... 200
7.3.5.3 Electrochemical Properties ............ 201
7.4 Conclusions ........................................... 203
References ................................................. 205
8 Mechanics of Materials for Li-Battery Systems .............. 209
Katerina E. Aifantis, Kurt Maute, Martin L. Dunn, and
Stephen A. Hackney
8.1 Introduction .......................................... 209
8.2 Mechanics Considerations During Battery Life .......... 211
8.3 Modeling Elasticity and Fracture During
Electrochemical Cycling ............................... 214
8.3.1 Fracture in a Bilayer Configuration ............ 214
8.3.2 Elasticity and Fracture in an Axially
Symmetric Configuration ........................ 216
8.3.3 Fracture and Damage Evolution for Thin Film
Case ........................................... 220
8.3.4 Fracture and Damage in Fiber-Like/Nanowire
Electrodes ..................................... 223
8.3.5 Spherical Active Sites ......................... 223
8.3.6 Stability Plots ................................ 226
8.3.7 Volume Fraction and Particle Size
Considerations ................................. 227
8.3.7.1 Information from Stability Index ...... 228
8.3.7.2 Griffith's Criterion .................. 228
8.3.8 Critical Crack Length .......................... 230
8.3.9 Mechanical Stability of Sn/C Island Structure
Anode .......................................... 231
8.4 Multiscale Phenomena and Considerations in Modeling ... 235
8.4.1 Macroscale Modeling ............................ 236
8.5 Particle Models of Coupled Diffusion and Stress
Generation ............................................ 239
8.5.1 Li+ Transport During Extraction and Insertion
from a Host .................................... 240
8.5.2 Electrochemical Reaction Kinetics .............. 242
8.5.3 Stress Generation .............................. 243
8.5.4 Representative Results ......................... 243
8.6 Diffusional Processes During Cycling .................. 248
8.6.1 Multiscale Electrochemical Interactions ........ 248
8.6.2 Diffusion Stresses in Low Symmetry
Composition Fields ............................. 252
8.7 Conclusions ........................................... 254
References ................................................. 254
Index ...................................................... 257
|
|