Varga K. Computational nanoscience: applications for molecules, clusters, and solids (Cambridge; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаVarga K. Computational nanoscience: applications for molecules, clusters, and solids / K.Varga, J.A.Driscoll. - Cambridge; New York: Cambridge University Press, 2011. - xii, 431 p.: ill. - Ref.: p.409-427. - Ind.: p.428-431. - ISBN 978-1-10700-170-1
 

Оглавление / Contents
 
   Preface ..................................................... xi

Part I  One-dimensional problems ................................ l

1  Variational solution of the Schrцdinger equation ............. 3
   1.1  Variational principle ................................... 3
   1.2  Variational calculations with Gaussian basis
        functions ............................................... 5
2  Solution of bound state problems using a grid ............... 10
   2.1  Discretization in space ................................ 10
   2.2  Finite differences ..................................... 11
   2.3  Solution of the Schrцdinger equation using 
        three-point finite differences ......................... 15
   2.4  Fourier grid approach: position and momentum
        representations ........................................ 17
   2.5  Lagrange functions ..................................... 21
3  Solution of the Schrцdinger equation for scattering 
   states ...................................................... 32
   3.1  Green's functions ...................................... 34
   3.2  The transfer matrix method ............................. 38
   3.3  The complex-absorbing-potential approach ............... 39
   3.4  R-matrix approach to scattering ........................ 51
   3.5  Green's functions ...................................... 60
   3.6  Spectral projection .................................... 79
   3.7  Appendix: One-dimensional scattering states ............ 83
4  Periodic potentials: band structure in one dimension ........ 85
   4.1  Periodic potentials; Bloch's theorem ................... 85
   4.2  Finite difference approach ............................. 86
   4.3  Periodic cardinals ..................................... 87
   4.4  R-matrix calculation of Bloch states ................... 89
   4.5  Green's function of a periodic system .................. 93
   4.6  Calculation of the Green's function by continued
        fractions ............................................. 103
5  Solution of time-dependent problems in quantum mechanics ... 115
   5.1  The Schrцdinger, Heisenberg, and interaction
        pictures .............................................. 115
   5.2  Floquet theory ........................................ 117
   5.3  Time-dependent variational method ..................... 119
   5.4  Time propagation by numerical integration ............. 120
   5.5  Time propagation using the evolution operator ......... 121
   5.6  Examples .............................................. 128
   5.7  Photoionization of atoms in intense laser fields ...... 134
   5.8  Calculation of scattering wave functions by wave
        packet propagation .................................... 142
   5.9  Steady state evolution from a point source ............ 147
   5.10 Calculation of bound states by imaginary time
        propagation ........................................... 151
   5.11 Appendix .............................................. 155
6  Solution of Poisson's equation ............................. 160
   6.1  Finite difference approach ............................ 160
   6.2  Fourier transformation ................................ 167
   
Part II Two-and three-dimensional systems ..................... 171
   
7  Three-dimensional real-space approach: from quantum dots
   to Bose-Einstein condensates ............................... 173
   7.1  Three-dimensional grid ................................ 173
   7.2  Bound state problems on the 3D grid ................... 175
   7.3  Solution of the Poisson equation ...................... 179
   7.4  Harmonic quantum dots ................................. 184
   7.5  Gross-Pitaevskii equation for Bose-Einstein
        condensates ........................................... 189
   7.6  Time propagation of a Gaussian wave packet ............ 191
8  Variational calculations in two dimensions: quantum dots ... 196
   8.1  Introduction .......................................... 196
   8.2  Formalism ............................................. 197
   8.3  Code description ...................................... 200
   8.4  Examples .............................................. 202
   8.5  Few-electron quantum dots ............................. 203
   8.6  Appendix .............................................. 208
9  Variational calculations in three dimensions: atoms and
   molecules .................................................. 214
   9.1  Three-dimensional trial functions ..................... 214
   9.2  Small atoms and molecules ............................. 216
   9.3  Quantum dots .......................................... 217
   9.4  Appendix: Matrix elements ............................. 220
   9.5  Appendix: Symmetrization .............................. 223
10 Monte Carlo calculations ................................... 225
   10.1 Monte Carlo simulations ............................... 225
   10.2 Classical interacting many-particle system ............ 229
   10.3 Kinetic Monte Carlo ................................... 231
   10.4 Two-dimensional Ising model ........................... 239
   10.5 Variational Monte Carlo ............................... 250
   10.6 Diffusion Monte Carlo ................................. 255
11 Molecular dynamics simulations ............................. 263
   11.1 Introduction .......................................... 263
   11.2 Integration of the equation of motions ................ 264
   11.3 Lennard-Jones system .................................. 265
   11.4 Molecular dynamics with three-body interactions ....... 265
   11.5 Thermostats ........................................... 266
   11.6 Physical quantities ................................... 270
   11.7 Implementation and examples ........................... 270
12 Tight-binding approach to electronic structure
   calculations ............................................... 274
   12.1 Tight-binding calculations ............................ 274
   12.2 Electronic structure of carbon nanotubes .............. 281
   12.3 Tight-binding model with Slater-type orbitals ......... 289
   12.4 Appendix: Matrix elements of Slater-type orbitals ..... 291
13 Plane wave density functional calculations ................. 295
   13.1 Density functional theory ............................. 295
   13.2 Description of the plane wave code and examples ....... 304
14 Density functional calculations with atomic orbitals ....... 317
   14.1 Atomic orbitals ....................................... 317
   14.2 Matrix elements for numerical atomic orbitals ......... 319
   14.3 Examples .............................................. 324
   14.4 Appendix: Three-center matrix elements ................ 326
15 Real-space density functional calculations ................. 332
   15.1 Ground state energy and the Kohn-Sham equation ........ 332
   15.2 Real-space approach ................................... 334
   15.3 Examples .............................................. 337
16 Time-dependent density functional calculations ............. 339
   16.1 Linear response ....................................... 340
   16.2 Linear optical response ............................... 343
   16.3 Solution of the time-dependent Kohn-Sham equation ..... 346
   16.4 Simulation of the Coulomb explosion of H2 ............. 347
   16.5 Calculation of the dielectric function in real time
        and real space ........................................ 350
17 Scattering and transport in nanostructures ................. 356
   17.1 Landauer formalism .................................... 358
   17.2 R-matrix approach to scattering in three dimensions ... 362
   17.3 Transfer matrix approach .............................. 362
   17.4 Quantum constriction .................................. 372
   17.5 Nonequilibrium Green's function method ................ 377
   17.6 Simulation of transport in nanostructures ............. 385
18 Numerical linear algebra ................................... 390
   18.1 Conjugate gradient method ............................. 390
   18.2 Conjugate gradient diagonalization .................... 392
   18.3 The Lanczos algorithm ................................. 394
   18.4 Diagonalization with subspace iteration ............... 396
   18.5 Solving linear block tridiagonal equations ............ 398
   
   Appendix  Code descriptions ................................ 407
   References ................................................. 409
   Index ...................................................... 428


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:56 2019. Размер: 12,564 bytes.
Посещение N 1567 c 25.09.2012