Foreword ...................................................... xxi
Preface ....................................................... xxv
1 Electricity History - A Review of the Road Ahead ............. 1
1.1 History of Growth of the Electricity Business ........... 1
1.1.1 Societal and Organizational Changes .............. 1
1.2 Innovative Technology Developments and Growth of
Conglomerates ........................................... 2
1.3 Economic Growth-GDP and Electricity Consumption ......... 3
1.2.1 Factors Leading to Further Growth of
Conglomerates .................................... 2
1.4 Monopolies Develop Built-in Defects ..................... 4
1.5 Breakup of Bell Systems Leads to Unbundling ............. 5
1.5.1 New Technologies Open Competition to Small-
Scale Capital .................................... 6
1.5.2 Oil Cartels Deliver a Blow ....................... 6
1.5.3 Environmental Concerns Raise Costs ............... 7
1.6 Importance of Renewable Energy Recognized-Wind Energy
Becomes a Challenger .................................... 7
1.6.1 A System Changeover is Necessary ................. 8
1.7 Structural Changes ...................................... 8
1.7.1 Working of the Old Model ......................... 8
1.8 Cost Breakdown in the Old Model ........................ 10
1.9 Step-by-Step Restructuring ............................. 11
1.9.1 Generation ...................................... 11
1.9.2 Distribution .................................... 11
1.9.3 Evolution of the Free Market .................... 11
1.9.4 Transmission .................................... 12
1.10 The New Decision Authorities ........................... 12
1.11 Open Power Marketing Now Rerestructuring Electricity
Power System ........................................... 13
References .................................................. 13
2 Risks, Operation, and Maintenance of Hydroelectric
Generators .................................................. 15
2.1 The Present Scenario ................................... 15
2.2 Types and Sizes of Hydroelectricity Projects ........... 15
2.3 Advantages of Hydroelectricity ......................... 18
2.4 Slow progress of Hydroelectricity Projects ............. 19
2.4.1 Land Acquisition, Evacuees, and Resettlement .... 19
2.4.2 Archeological Problems .......................... 20
2.4.3 Environmental Problems .......................... 20
2.4.4 Added Features of Hydroelectric Projects ........ 20
2.5 Factors Propelling the Phased Progress of the
Hydroelectric Industry ................................. 21
2.5.1 Phase 1 (1900-1920)-Technocentric Phase ......... 21
2.5.2 Phase 2 (1920-1980)-Capital-Directed Phase ...... 21
2.5.3 Phase 3 (1980 Onward)-Sociotechnical Phase
Infrastructure Nature ........................... 22
2.6 Hydro Projects Fall Short of Attracting Private
Investment ............................................. 22
2.7 Dam Building Progress Over a Century ................... 22
2.7.1 Principal Risks Associated with Development of
Hydro Projects .................................. 22
2.7.2 India Has a High Proportion of
Hydroelectricity ................................ 24
2.8 Desirable Configuration for Hydro Projects to Attract
Private Investment ..................................... 24
2.8.1 Challenges ...................................... 25
2.9 Operation of a Hydroelectric Plant ..................... 25
2.9.1 Typical Layout .................................. 25
2.9.2 Capability Curve for a Hydrogenerator ........... 26
2.9.3 Efficiency of a Hydro Unit ...................... 26
2.10 Unit Allocation within a Large HE Plant ................ 28
2.11 Speed Control of a Water Turbine ....................... 28
2.11.1 Governor for Water Turbine Generators (WTGs) .... 28
2.12 Startup Process for a WTG .............................. 29
2.13 Speed Controls are Rigid ............................... 30
2.14 Speed Increase Due to Sudden Load Cutoff ............... 30
2.15 Frequency and Harmonic Behavior After a Sudden Load
Rejection .............................................. 30
2.15.1 Voltage Behavior After a Load Cutoff ............ 33
2.16 Effect of Penstock Pressure Pulsations ................. 33
2.17 AC Excitation of Rotor Field ........................... 33
2.18 Unit Commitment from Hydroelectric Generators,
Including Pumped Storage Systems ....................... 34
2.19 ICMMS of Hydroelectric Generating Units ................ 34
2.20 Controls and Communications in hydro Systems ........... 35
2.21 General Maintenance .................................... 35
2.22 Limitations of Scheduled and Breakdown Maintenance ..... 36
2.23 Reactive Maintenance-Key Elements ...................... 36
2.24 Key Components of an ICMMS-Case of a Hydroelectric
System ................................................. 37
2.25 Intelligent Electrohydraulic Servomechanism ............ 37
2.26 Online Monitoring and Forecasting ...................... 38
2.26.1 Partial Discharges (PDs) in the Stator Coils
of Alternators .................................. 38
2.26.2 Air Gap Monitoring of Vertical Hydraulic
Generators ...................................... 39
2.27 Subsynchronous Resonance (SSR) and Twisting of Rotor
Shafts ................................................. 39
References .................................................. 40
3 Hydroelectric Generation-Pumped Storage, Minor
Hydroelectric, and Oceanic-Based Systems .................... 45
3.1 Water as an Energy Supplier and an Energy Store ........ 45
3.2 Pumped Water Storage System for Electricity
Generation ............................................. 46
3.3 Operation of a Pumped Storage System ................... 46
3.4 Pumped Storage Systems Have Limited Scope .............. 47
3.5 Pumped Storage Systems and Wind Energy ................. 48
3.6 Small Hydroelectric Plants (SHPs) ...................... 49
3.7 Types of SHP Projects-Sizes ............................ 49
3.8 Location-Wise Designations of SHPs ..................... 50
3.9 Components of an SHP ................................... 50
3.10 Typical Layouts Of SHPs ................................ 51
3.10.1 The Generator ................................... 51
3.10.2 Dam-Based SHPs .................................. 54
3.10.3 Canal-Based SHPs ................................ 54
3.11 Project Costs of an SHP ................................ 54
3.12 Drawing Electricity from the Ocean ..................... 55
3.12.1 Nature of Energy Available from the Oceans ...... 55
3.12.2 Le Ranee Tidal Power Plant ...................... 56
3.13 Underwater Turbine and Column-Mounted Generator ........ 57
3.14 Wave Energy ............................................ 58
Appendix 3-1 World's Largest Hydro-Electric Projects ........ 60
Itaipu Hydro Project ................................... 60
Signs of the Times in Brazilian Electricity ............ 60
Appendix 3-2 Remote Control of the Hydroelectric System at
Guri ................................................... 61
Remote Terminal Units (RTUs) ........................... 65
Operation of Generator RTU ............................. 65
Common Services RTUs ................................... 66
Switchyard RTUs ........................................ 66
Automatic Generation Control (AGC) and Automatic
Voltage Control (AVC) .................................. 66
Working of the Guri Control System ..................... 66
References .................................................. 67
4 Thermal Power Generation-Steam Generators ................... 69
4.1 Thermal Electricity Generation Has the Largest Share-
The Present Scenario ................................... 69
4.2 Planning of Thermal Stations-Risks and Challenges ...... 70
4.2.1 Project Risks ................................... 70
4.2.2 Fuels for Thermal Generation .................... 71
4.3 Cost Breakdown and Consumption Pattern of
Electricity ............................................ 71
4.4 Main Energy Suppliers .................................. 71
4.4.1 Coal ............................................ 71
4.4.2 Natural Gas ..................................... 73
4.4.3 Mineral Oils .................................... 74
4.4.4 Nuclear Power ................................... 74
4.5 Workings of a Coal-Fired Steam Generator Unit .......... 74
4.5.1 Coal Flow ....................................... 74
4.6 Types of Boilers ....................................... 76
4.6.1 A Modern 100 MW Boiler .......................... 77
4.6.2 Vertical Water-Wall Furnace with Rifled Tubes ... 78
4.6.3 Integrated Coal Gasification Combined Cycle
Furnace ......................................... 78
4.7 Classification of Generating Units ..................... 78
4.7.1 Base-Load Generators ............................ 78
4.7.2 Peak-Load Generators ............................ 79
4.7.3 Intermediate-Load Generators .................... 79
4.8 Combined-Cycle Power Plant (CCPP) ...................... 79
4.8.1 A Denitrifying Arrangement ...................... 80
4.8.2 Typical Rating Ratios Between Gas and Steam
Portions ........................................ 81
4.8.3 Advances in Synchronous Generators .............. 81
References .................................................. 83
5 Thermal Station Power Engineering ........................... 87
5.1 Start-Up Process of a CCPP ............................. 87
5.2 Short-Term Dynamic Response of a CCPP to Frequency
Variation .............................................. 88
5.3 Cascade Tripping of a CCPP Due to Frequency
Excursion .............................................. 88
5.4 Operation Planning to Meet Load Demands-Flow Diagram ... 89
5.5 Capacity Curves for Thermal Electricity Generation ..... 90
5.6 Operational Economy Includes Fuel Considerations ....... 92
5.6.1 Costs ........................................... 92
5.6.2 Reliability of Supply ........................... 92
5.6.3 Emission Caps Considerations .................... 92
5.7 Efficiency in Operating Practices ...................... 92
5.8 Ancillary Services Compulsorily ........................ 93
5.8.1 Reactive Power Supply ........................... 93
5.8.2 Load Following .................................. 94
5.8.3 Loss Compensation ............................... 94
5.8.4 Energy Imbalance ................................ 94
5.8.5 Scheduling and Dispatch Services ................ 94
5.9 Changing Performance Requirements for Thermal Plant
Operators .............................................. 94
5.10 Expanding Grids Demand Tight Frequency Tolerances ...... 95
5.11 Reserves are Important in Frequency Control ............ 95
5.12 Reserves Based on Droop Characteristic ................. 96
5.13 Primary Frequency Control .............................. 96
5.14 Secondary Frequency Control (SFC) ...................... 98
5.15 Tertiary Frequency Control ............................ 100
5.16 Rigid Frequency Controls are Bringing in Changes ...... 100
5.17 Voltage Control Services .............................. 100
5.18 Voltage Measurement at POD into the Transmission
System ................................................ 101
5.19 Attractive Market Prices Lead to Reserves Over and
Above the Compulsory Limits ........................... 101
5.20 Importance of Operating Frequency Limits for
a Thermal Generator ................................... 101
5.21 System Protection ..................................... 103
5.22 Maintenance Practices ................................. 104
5.22.1 Corrective Maintenance ......................... 104
5.22.2 Preventive Maintenance ......................... 104
5.22.3 Predictive Maintenance ......................... 104
5.23 Challenges in Meeting Environmental Obligations ....... 105
5.24 MHD Generators ........................................ 105
Appendix 5-1 Energy Efficiency Program [36] ................ 106
Generation Project Types .............................. 106
Appendix 5-2 Capability Curves of a 210 MW Generator ....... 106
Appendix 5-3 Design of an MHD Generator System and its
Output Conversion ..................................... 107
Extracting Electricity from the MHD Generator ......... 110
References ................................................. 111
6 Environmental Constraints in Thermal Power Generation
Acid Rain .................................................. 115
6.1 Introduction to Acid Rain and Carbon Emissions ........ 115
6.2 World Concern Over Environmental Pollution and
Agreements to Control It .............................. 116
6.3 U.S. Clean Air Act and Amendments ..................... 116
6.4 Complying with Constraints on the SO2 Emission Rate ... 117
6.4.1 Options Available .............................. 117
6.4.2 Costs Involved in Reduction of SO2 Emissions ... 119
6.5 Surcharges on Emissions ............................... 120
6.6 Complying with Constraints on Denitrifying ............ 122
6.6.1 Burners Out of Service (BOOS) .................. 123
6.6.2 NOx Variation with Load ........................ 124
6.7 Continuous-Emission Monitoring Systems (CEMS) ......... 126
6.8 The European Systems: Helsinki Protocol on SO2 and
Sofia Protocol on NOx ................................. 126
6.9 The Japanese Example-City-Wise and Comprehensive ...... 127
6.10 A Plant Running Out of Emission Allowances ............ 128
6.11 NOx Permits are Projected as Important Players in
Price Fixing of Power in a Free Market ................ 128
6.12 Air Pollution by Carbon Dioxide-CO2 ................... 129
Appendix 6-1 Ambient Air Quality Standards for
Residential Areas ..................................... 129
Appendix 6-2 Ambient Air Quality Standards for Industrial
Areas ................................................. 130
Appendix 6-3 Details on Desulphurization Plants in the
United States ......................................... 131
References ................................................. 132
7 Environmental Constraints in Thermal Power Generation-
Carbon and the Kyoto Proposals ............................. 135
7.1 Continuing Growth of CO2 in the Air ................... 135
7.2 CO2 from Different Fuels .............................. 135
7.3 CO2 Emission by Fuel Type ............................. 136
7.4 Coal has the Highest Rate of Growth Among Energy
Suppliers ............................................. 136
7.5 Earth's Oceans and Seas Absorb CO2 .................... 137
7.6 Developments on the Front of Reduction in Greenhouse
Gas Emissions ......................................... 138
7.7 Kyoto Proposals ....................................... 138
7.8 Clause 1 of Kyoto Protocol of 1998 .................... 139
7.9 Original Kyoto Proposals .............................. 139
7.10 Proposals for Parties to the 2007 Protocol ............ 140
7.10.1 Emission Trading with ERUs and LULUCF .......... 141
7.10.2 Joint Implementation ........................... 141
7.10.3 Clean Development Mechanism (CDM) .............. 141
7.10.4 Certified Emission Reductions (CERs) ........... 141
7.10.5 CER to the Rescue of Protocol Parties .......... 141
7.10.6 Passage of the CDM Proposal .................... 142
7.11 Project Report Needs .................................. 142
7.11.1 Eligibility Criteria ........................... 142
7.11.2 Additionality Factor ........................... 143
7.12 An Illustrative Validation Report ..................... 143
7.13 A Workout for Emission Factors and Emissions for
a Hydro and for a Wind Energy Installation ............ 144
7.14 Open Skies Divided in Tons of CO2 Per Nation .......... 145
7.15 An example of Baseline and Emission Reductions ........ 145
7.16 Methodological Tools to Calculate the Baseline and
Emission Factor ....................................... 147
7.17 Tool to Calculate the Emission Factor for an
Electricity System .................................... 147
7.18 Simple Operating Margins .............................. 147
7.19 Incentives for Emission Reduction ..................... 148
Appendix 7-1 Default Efficiency Factors for Power Plants ... 151
References ................................................. 151
8 Nuclear Power Generation ................................... 153
8.1 Nuclear Power Generation Process in Brief ............. 153
8.1.1 Risks Involved ................................. 153
8.1.2 Scattered Designs and Systems .................. 154
8.2 Rise, Fall, and Renaissance of Nuclear Power Plants ... 154
8.3 Power Uprates ......................................... 155
8.4 Advantages of Nuclear Plants .......................... 156
8.5 Some Types of Nuclear Power Reactors .................. 156
8.6 Other Types from Different Countries .................. 157
8.7 Planning of NP Plants ................................. 157
8.7.1 U.S. Plant Planning Process for an
NPP-Stages 1 to 3 .............................. 157
8.7.2 Periods Involved at Each Stage ................. 158
8.8 Financial Risks in Planning ........................... 158
8.9 Operation of NP Plants ................................ 158
8.9.1 Personnel ...................................... 159
8.9.2 Technical ...................................... 160
8.10 Safety Measures to Prevent Explosion in a Reactor
Vessel ................................................ 160
8.11 Prevention of Accidents ............................... 160
8.11.1 Lightning Strikes .............................. 160
8.11.2 Utility Bus Voltage Dips ....................... 161
8.11.3 The Generator Output Trips ..................... 162
8.11.4 Off-Site Supply Trips .......................... 162
8.12 Class IE Equipment and Distribution Systems-
Ungrounded Earthing Systems ........................... 163
8.13 Environmental Considerations-Radiation Hazard ......... 164
8.14 Waste Management ...................................... 164
8.14.1 Reprocessing ................................... 164
8.14.2 Underground Storage Tanks ...................... 165
8.15 Environmental Benefits ................................ 165
8.16 Challenges for Research ............................... 166
8.17 Rapid Increase in Population Expected ................. 166
8.18 Fast Breeder Reactors ................................. 166
Appendix 8-1 Nuclear Reactor Accident at Three Mile
Island ................................................. 167
Appendix 8-2 Chernobyl Accident ............................ 168
Appendix 8-3 Worldwide Capacity and Generation of Nuclear
Energy ................................................. 169
References ................................................. 170
9 Wind Power Generation ...................................... 173
9.1 Introduction to Wind .................................. 173
9.1.1 Technology Growth in Wind Turbine Generators ... 174
9.1.2 Nature of Wind ................................. 174
9.1.3 Components of a Wind Turbine Generator ......... 174
9.2 Operation of Wind Turbine Generators .................. 175
9.2.1 Output of a WTG ................................ 175
9.2.2 Performance Improvement through Blade Pitch
Control ........................................ 176
9.2.3 Efficiency of a WTG ............................ 176
9.2.3 Losses in a WTG ................................ 177
9.2.4 Flickers in the Output of a WTG ................ 177
9.3 Connection of Wind Energy Plants to the Grid-The
Grid Code ............................................. 179
9.3.1 Low-Voltage Ride-through ....................... 179
9.4 American Grid Code .................................... 180
9.5 A Resistive Braking of a WTG .......................... 181
9.6 Power and PF Control .................................. 182
9.7 Modeling of a Wind Turbine Generator .................. 182
9.7.1 Objectives ..................................... 183
9.7.2 Method ......................................... 183
9.7.3 Present Problem Areas in Modeling .............. 183
9.7.4 Model Validations .............................. 184
9.8 Economics of Wind Energy .............................. 184
9.8.1 How Does a Modern Power System Operate on the
Marketing Side? ................................ 184
9.8.2 Unit Commitment and Scheduling ................. 185
9.9 Capacity Factor of a WTG .............................. 186
9.10 Capacity Credit Considerations ........................ 186
9.11 Capacity Factor for WECs in a Hybrid System ........... 187
9.12 Wind Penetration Limit ................................ 187
9.13 Wind Power Proportion ................................. 187
9.14 Wind Integration Cost in United States ................ 188
9.15 Wind Energy Farms ..................................... 188
9.16 Promoting Growth of Wind Electricity .................. 188
9.17 Maintenance of WTG .................................... 190
9.18 UNFCCC and Wind Energy ................................ 190
References ................................................. 190
10 Photovoltaic Energy-Solar Cells and Solar Power Systems .... 195
10.1 Photovoltaic Energy-How it Works ...................... 195
10.2 Advantages of Photovoltaic Energy ..................... 195
10.3 Disadvantages of PV Energy ............................ 196
10.4 Solar Thermal Density-Insolation ...................... 196
10.5 Output of a PV Cell ................................... 197
10.6 Variation with Ambient Temperature .................... 197
10.7 Voltage-Versus-Current Characteristics of a Solar
Cell .................................................. 198
10.8 Matching the PV with the Load ......................... 199
10.8.1 Maximum Power Point Tracker (MPPT) ............. 199
10.8.2 VMPPT and CMPPT ................................ 200
10.9 Old Working Model of an MPPT .......................... 201
10.10 Maximizing the Output of a Solar Panel ............... 201
10.10.1 By Orienting the Solar Panel .................. 201
10.10.2 By Water Cooling the Solar Panel Backs ........ 202
10.11 Interface with a Power System ........................ 202
10.12 Power Conditioning Systems ........................... 202
10.12.1 Quality Requirements of a PCS ................. 203
10.12.2 Converting DC into AC ......................... 204
10.13 Super Capacitors and Storage Batteries ............... 204
10.14 NERC Guidelines for Connecting a PV System to
a Grid ............................................... 204
10.15 Problems of Interfacing PV Systems with the Grid ..... 205
10.16 Penetration Percentage by a PV Energy System into
a Utility Grid ....................................... 206
10.17 Progress in Application of PV Energy ................. 206
10.17.1 PV Cells and Agricultural Pumps ............... 206
References ................................................. 213
11 Direct Conversion into Electricity-Fuel Cells .............. 217
11.1 Fuel Cells Bypass Intermediate Steps in the
Production of Electrical Energy ....................... 217
11.2 Working of a Fuel Cell ................................ 217
11.3 A Reformer for Getting Hydrogen From Methane .......... 218
11.4 Fuels for a Fuel Cell ................................. 219
11.5 Fuel Cells on the Forefront of Development ............ 220
11.5.1 Advantages of the РЕМ Fuel Cells ............... 220
11.5.2 Disadvantages of РЕМ Fuel Cells ................ 220
11.6 Comparison between Fuel Cells ......................... 221
11.7 Typical Characteristics of Various Fuel Cells ......... 221
11.8 Developments in Fuel Cells ............................ 223
11.8.1 Molten Carbonate Fuel Cell ..................... 222
11.8.2 CO2 Recycling under Pressure Swing
Absorption ..................................... 224
11.9 Applications of Fuel Cells ............................ 224
11.9.1 Automobile Propulsion .......................... 224
11.9.2 Residential Applications ....................... 225
11.9.3 Electricity Utilities .......................... 225
11.10 An SOFC-Gas Turbine System ........................... 225
11.10.1 Special Advantages ............................ 226
11.11 Efficiencies of Various Systems in Thermal Power
Generation Technologies ............................... 227
References ................................................. 228
12 Hybrid Systems ............................................. 231
12.1 Coupling of Energy Sources ............................ 231
12.2 What Exactly are Hybrids? ............................. 231
12.2.1 Where Hybrids Can be Effective ................. 232
12.3 Stand-Alone Hybrid Power Systems ...................... 232
12.3.1 Options for A Rural Electric Supply-Case of
a Remote Mexican Village ....................... 232
12.3.2 Six Alternatives with Advantages and
Disadvantages in a Mexican Case Study .......... 233
12.4 Use of Renewable Sources of Energy in Mexico-San
Antonio Aqua Bendita .................................. 234
12.5 Some Definitions ...................................... 235
12.5.1 Loss Probability of Supply Power (LPSP) ........ 235
12.5.2 Battery Capacity ............................... 235
12.5.3 Inverter Rating ................................ 235
12.5.4 Functions of a Battery Controller .............. 235
12.5.5 Storage Batteries are Important in PV/Wind
and Storage Battery Stand-alone Hybrid
Systems ........................................ 235
12.6 Cost Balance Between PV Cells and Storage Batteries ... 236
12.6.1 Other Hybrid Illustrations ..................... 236
12.7 Hybrids Incorporating Fuel Cells ...................... 237
12.7.1 PV-Fuel Cell Hybrids for a Spaceship ........... 237
12.7.2 Diesel Generator-Wind Energy Hybrids ........... 238
12.8 Midsea Hybrids ........................................ 238
12.9 Workings of a WTG and Diesel Generator ................ 238
12.9.1 Starting of WTGs ............................... 238
12.9.2 A Case of Low Wind ............................. 239
12.9.3 A Case of Wind Gust ............................ 239
12.9.4 In a Hybrid System, Can We Draw Energy
Wholly from WG? ................................ 239
12.9.5 An Irish Rule on Permissible Wind
Penetration .................................... 240
12.10 Wind Energy Penetration Limit ........................ 240
12.11 Wind Power-Fuel Cell Hybrids ......................... 240
12.12 Interfacing Nonconventional Energy Sources with
Utility Systems-Static Power Controllers (SPCs) ...... 241
12.13 Protective Controls Between a Utility and
a Newcomer............................................ 241
12.13.1 Routine Controls .............................. 241
12.13.2 Specific Controls ............................. 242
References ................................................. 243
13 Combined Generation-Cogeneration ........................... 247
13.1 Definition and Scope .................................. 247
13.2 Rise of Cogeneration .................................. 248
13.3 Basic Purpose of Cogeneration ......................... 248
13.4 Three Types of Cogenerators ........................... 248
13.4.1 Primary Product-Steam .......................... 248
13.4.2 Primary Product-Electricity .................... 249
13.4.3 Equal Production-Steam and Electricity ......... 249
13.5 Advantages Offered by Cogeneration .................... 249
13.6 Planning of Cogeneration .............................. 250
13.6.1 Planning by Old Established Cogenerating
Units .......................................... 250
13.6.2 New High-Tech Industries ....................... 251
13.6.3 Small Establishments ........................... 251
13.7 Economic Objectives for a Cogenerator ................. 253
13.7.1 Optimization of Fuel Input ..................... 254
13.7.1 Profit Maximization Under TOU Rates - An
Illustration ................................... 254
13.8 Operation of Cogenerators ............................. 254
13.8.1 Within Its Own Complex ......................... 254
13.8.2 As a Tie-Up Between a Cogenerator and
a Utility ...................................... 256
13.9 Working Together with Cogeneration .................... 256
13.9.1 Excitation Control of Cogenerators ............. 257
13.9.2 Short-Circuit Faults and Overcurrent ........... 258
13.9.3 Clearing Times for an Out-of-Step Relay
Control ........................................ 259
13.9.4 Loss of Excitation Relay-Maloperations ......... 259
13.9.5 A Series Inductance in the Tie Line Works as
a Stabilizer ................................... 260
13.10 Islanding of Cogeneration Section .................... 260
13.10.1 Sudden Overloads .............................. 260
13.10.2 Sudden Load Cut-offs .......................... 260
13.11 Environmental Considerations ......................... 262
13.12 Cogeneration in Brazil ............................... 263
Appendix B-l A Typical Cogenerating System for a High-
Tech, Science-Based Industrial Park in Taiwan ......... 264
A Load Shedding Scheme ................................ 265
Appendix 13-2 NERC Directive ............................... 266
Appendix 13-3 Combined Power Generation and Captive
Power ................................................. 268
Plants - A Typical Example Background ................. 268
Problems in Cogeneration and Grid Interconnections .... 268
Grid Discipline for the CPP ........................... 269
Appendix 13-4 Cogeneration in Sugar Mills in India ......... 269
References ................................................. 270
14 Distributed Generation (DG) and Distributed Resources
(DR) ....................................................... 275
14.1 Definition and Scope .................................. 275
14.1.1 Definitions .................................... 275
14.1.2 Scope .......................................... 275
14.2 Who are the Players in Distribution Generation? ....... 276
14.3 Prominent Features of DRs ............................. 276
14.4 Types of DGs .......................................... 276
14.4.1 Background ..................................... 278
14.5 Push Factors, Stay-Put Costs, and Investment
Prospects for Electricity ............................. 278
14.6 Investment Options .................................... 278
14.6.1 Load Growth, Including Time Factor ............. 279
14.6.2 Costs of Available Alternatives-DG versus
Substations .................................... 279
14.6.3 Costs of Overloading Existing Assets ........... 280
14.6.4 Costs of Unserved Energy ....................... 281
14.6.5 Interruption Costs ............................. 281
14.6.6 Line Losses Will Keep on Increasing with the
Load ........................................... 281
14.7 Planning Sites for a DG ............................... 282
14.7.1 Voltage Support for a Rural Line with Active
and Reactive Power under Different Load
Conditions ..................................... 284
14.8 Operation of DGs in an Electric Power System .......... 284
14.8.1 A Ride Through a Voltage Dip ................... 285
14.8.2 Small-Disturbance Stability of a DG ............ 286
14.8.3 Working of a Protective Fuse and a Backup
Recloser Affected by the Presence of a DG ...... 287
14.8.4 Correlation between a Fuse and a Trip Relay .... 288
14.8.5 Boost-up of Fault Current by an Inverter and
its Effect on Reclosing ........................ 289
14.8.6 An Inductance Generator with a D-Statcom ....... 289
14.9 Islanding of an EPS Section from the Main Body ........ 289
14.9.1 Disconnect on Islanding ........................ 289
14.9.2 Vector Surge Relay (Out of Step) ............... 290
14.9.3 Rate of Change of Frequency Relay .............. 291
14.9.4 Built-in Protection for Inverter Systems ....... 291
14.10 Allowable Penetration Levels by DRs .................. 291
14.11 Synchronous Generator as a DG with Excitation
Controls .............................................. 292
14.12 How Can a DG Earn Profits? ........................... 293
14.12.1 Peak Load Servicing ........................... 293
14.12.2 Selling Contingency Security Reserves to
a Utility ..................................... 293
14.13 Scope for Gas-Based DGs .............................. 293
14.14 Diesel Generators .................................... 293
14.15 Evaluation of Service Rendered by Stand-by DGs ....... 294
14.16 Reliability Cost for a DG Set ........................ 294
14.17 Maintenance and Protection of Diesel Generators ...... 295
14.17.1 Noise Limit for Diesel Generator Sets (up to
100 KVA) ...................................... 295
14.17.2 Emission Limits for New Diesel Engines (up
to 800 kW) for Generator Set Applications ..... 295
14.17.3 Poona Pattern of Energy Supply from Stand-by
Sets to a Utility ............................. 295
14.18 UK Policy on Generation of Low-Carbon Electricity .... 296
References ................................................. 297
15 Interconnecting Distributed Resources with Electric Power
Systems .................................................... 301
15.1 Scope ................................................. 301
15.2 Definitions per IEEE Std 1547-2003 .................... 302
15.3 DR Ceases to Energize the Area EPS .................... 302
15.4 Protective Devices .................................... 302
15.5 Schematic of an Interconnection Between a DR and an
Area EPS .............................................. 302
15.6 Restraints on a DR Operator ........................... 302
15.7 Responsibilities and Liabilities of EPS Area
Operators ............................................. 303
15.8 Power Quality Windows ................................. 304
15.8.1 Frequency ...................................... 305
15.8.2 Harmonics ...................................... 305
15.8.3 Allowable Voltage Distortion Limits for
Power Generating Equipment ..................... 305
15.8.4 Maximum Harmonic Voltage Distortions at PCC
at Voltages up to 69 kV ........................ 306
15.9 Limitation of DC Injection ............................ 306
15.10 Islanding of a Local-Area EPS that Includes a DR ..... 306
15.11 Reconnection ......................................... 308
15.12 Safety Aspects ....................................... 309
15.13 Testing of Interconnecting Equipment ................. 309
15.14 Interconnections Will be Important in Tomorrow's
Scenario ............................................. 309
Appendix 15-1 CBIP Standard Recommendation, Extracts from
Publication 2517, July 1996 [4] ........................ 310
Recommendations ........................................ 310
Target Compatibility Levels ............................ 310
References ................................................. 311
16 Energy Storage-Power Storage Super Capacitors .............. 315
16.1 Energy Storage and the Future for Renewable Energy
Sources ............................................... 315
16.2 Advantages of Energy Storage .......................... 315
16.3 Factors for Choosing Type and Rating of a Storage
System ................................................ 316
16.3.1 Network Parameters ............................. 316
16.3.2 Connection and Cycling Costs ................... 316
16.4 Nature of Support by Electricity Storage Systems ...... 317
16.5 Load Density, Short-Circuit Capacity, and Storage of
Energy ................................................ 318
16.6 Photovoltaic Energy-PV Energy in Residential
Applications .......................................... 318
16.7 Maximum PV Penetration and Maximum Allowable Storage
go Hand in Hand ....................................... 319
16.8 Planning the Size of a Store for PV Inclusion in
a Distribution System ................................. 319
16.9 Types of Storage Devices for PV Systems ............... 321
16.10 Wind Energy .......................................... 322
16.11 Storage Technologies ................................. 323
16.12 Determining the Size Storage for Wind Power .......... 323
16.13 Control Modes for Stores and WTG ..................... 323
16.14 Energy Rating of Stores .............................. 328
16.15 Categories of Energy Storages ........................ 329
Appendix 16-1 A Supercapacitor ............................. 330
References ................................................. 334
17 Hydrogen Era ............................................... 337
17.1 Fossil-Based Fuels .................................... 337
17.2 Hydrogen Properties ................................... 337
17.3 Hydrogen Advantages ................................... 338
17.4 Production of Hydrogen ................................ 340
17.4.1 Presently Developed Processes for Production
of H2 .......................................... 340
17.4.2 Processes under Development for Bulk
Production of H2-Coal Gasification ............. 340
17.4.3 Processes under Laboratory/Scientific
Exploration-Thermochemical Water Splitting ..... 341
17.5 Potential Market Segments for Hydrogen ................ 342
17.6 Present Roadblocks to use of Hydrogen ................. 342
17.6.1 Costs of H2 are High ........................... 342
17.6.2 Basic Infrastructure Does Not Exist ............ 342
17.6.3 Petroleum Products are Well Established ........ 342
17.7 Governments Envision a Hydrogen Era ................... 343
17.8 An Example to Consider ................................ 343
Appendix 17-1 Proceedings of the National Hydrogen
Energy Road Map, Workshop Arranged by U.S. DOE ........ 343
Appendix 17-2 HTGR Knowledge Base .......................... 347
IAEA-TECDOC-1085: Hydrogen as an Energy Carrier and
its Production by Nuclear Power ....................... 347
References ................................................. 347
18 Basic Structure of Power Marketing ......................... 351
18.1 Reconstruction of the Electricity Business ............ 351
18.2 Unbundling of Old Monopoly ............................ 352
18.3 Open Access to Critical Facilities .................... 352
18.4 How Does the New System Work? ......................... 353
18.5 Market Participants And Their Functions ............... 353
18.6 New Key Personnel ..................................... 354
18.6.1 Role of a Systems Operator (Technical) ......... 354
18.6.2 Role of a System Operator (Financial) .......... 355
18.7 Role of a Regulator or Regulatory Commission .......... 355
18.8 Tools for the System Operator ......................... 355
18.9 Secondary Markets ..................................... 365
18.10 Free Market Objectives ............................... 356
18.10.1 Objectives for the Transmission Systems ....... 356
18.10.2 Objectives for the Wholesale Market:
A Standard Market Design (SMD) ................ 357
18.11 Success of the Free Market ........................... 357
18.12 How Do Electricity Markets Operate? .................. 358
18.13 Flow of Operating Funds .............................. 358
18.14 Effect of Reconstruction on Electricity Business -
Capital Investment Prospects .......................... 358
18.14.1 Generation .................................... 358
18.14.2 Peak-load Generators and Base-load
Generators .................................... 359
18.14.3 Investment and Costs of Compliance with
Emission Control Measures ..................... 359
18.14.4 BACT Favored by Regulators .................... 359
18.14.5 Output Limitations ............................ 360
18.14.6 Cap and Trade ................................. 360
18.14.7 Effect on Transmission Systems: Investment
Incentives and Responsibilities ............... 360
18.15 National Grid Transmission System .................... 361
Appendix 18-1 A Vast Array of Tools to Support
Tomorrow's Market Participants ........................ 361
References ................................................. 363
19 Looking into the Future .................................... 365
Index ......................................................... 367
IEEE Press Series on Power Engineering
|