Magnetism and synchrotron radiation: new trends (Berlin; Heidelberg, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMagnetism and synchrotron radiation: new trends / ed. by E.Beaurepaire et al. - Berlin; Heidelberg: Springer, 2010. - xxi, 421 p.: ill. (some col.). - (Springer proceedings in physics; 133). - Incl. bibl. ref. - ISBN 978-3-642-04497-7; ISSN 0930-8989
 

Оглавление / Contents
 
1  Introduction to Magnetism .................................... 1
   W. Weber
   1.1  Introduction ............................................ 1
        1.1.1  Definition of the Magnetic Moment ................ 1
        1.1.2  Energy of the Moment in an External Magnetic
               Field ............................................ 2
        1.1.3  Further Definitions .............................. 3
   1.2  Magnetism of Free Atoms and Electrons ................... 4
        1.2.1  Diamagnetism of Free Atoms ....................... 4
        1.2.2  Paramagnetism of Free Atoms ...................... 5
        1.2.3  Pauli Paramagnetism of Free Electrons (in
               Metals) .......................................... 9
   1.3  Ferromagnetism ......................................... 10
        1.3.1  Molecular Field ................................. 11
        1.3.2  Exchange Interaction as Origin of the
               Molecular Field ................................. 12
        1.3.3  Mean Field Approximation (MFA) .................. 14
        1.3.4  Spin Waves ...................................... 18
        1.3.5  Itinerant Ferromagnetism ........................ 21
   1.4  Magnetization Curves M(H) .............................. 22
        1.4.1  Magnetostatic Energy or Shape Anisotropy ........ 23
        1.4.2  Magneto-Crystalline Anisotropy .................. 24
        1.4.3  Magnetization Curves in the "Uniform Rotation"
               Model ........................................... 26
        1.4.4  Domains and Domain Walls ........................ 28
   1.5  Thin Film Magnetism .................................... 35
        1.5.1  Surface Anisotropy .............................. 35
        1.5.2  Indirect Exchange Coupling in Multilayers ....... 36
        1.5.3  Giant Magnetoresistance ......................... 39
   References .................................................. 40
2  Spintronics: Conceptual Building Blocks ..................... 43
   J.-Ph. Ansermet
   2.1  Spin Precession ........................................ 43
   2.2  Spin Relaxation ........................................ 45
   2.3  Spin-dependent Transport: The Collinear Case ........... 48
        2.3.1  Collisions ...................................... 50
        2.3.2  Calculation of the Currents ..................... 52
        2.3.3  Diffusion Equation and the Spin Accumulation .... 55
   2.4  Spin Relaxation of Conduction Electrons ................ 59
        2.4.1  Spin-Lattice Relaxation Time for Conduction
               Electrons ....................................... 59
        2.4.2  The Bottleneck Regime ........................... 62
        2.4.3  Spin-Orbit Scattering ........................... 63
        2.4.4  Electron-Magnon Scattering ...................... 65
        2.4.5  Spin Mixing by Collisions with Magnons .......... 67
   2.5  Spin-dependent Transport: The Non-collinear Case ....... 70
        2.5.1  Toward a Semi-classical Description of Spin
               Dynamics in Transport ........................... 71
        2.5.2  Constitutive Equations .......................... 71
        2.5.3  Spin Diffusion in Non-collinear
               Configurations .................................. 73
        2.5.4  Domain Walls .................................... 74
   References .................................................. 75
3  Interaction of Polarized Light with Matter .................. 77
   Y. Joly
   3.1  Introduction ........................................... 77
   3.2  Experimental Observations of X-Ray Interaction
        with Matter ............................................ 78
        3.2.1  Absorption ...................................... 78
        3.2.2  Dependence on Energy ............................ 78
        3.2.3  Dependence on the Atomic Environment ............ 80
        3.2.4  Dependence on the Light Polarization ............ 80
        3.2.5  Diffraction Around Edges ........................ 81
   3.3  The Light .............................................. 83
        3.3.1  Definitions and Notations ....................... 83
        3.3.2  Stokes Parameters ............................... 84
        3.3.3  Quantization of the Electromagnetic Field ....... 85
   3.4  Interaction of Light with an Electron in an Atom ....... 85
        3.4.1  Linear and Nonlinear Interactions ............... 86
        3.4.2  Interaction Hamiltonian ......................... 86
        3.4.3  Absorption and Emission ......................... 88
        3.4.4  Scattering ...................................... 88
        3.4.5  Transition Matrix ............................... 93
        3.4.6  Selection Rules ................................. 94
   3.5  Dielectric Function or Macroscopic Point of View ....... 98
        3.5.1  Complex Permittivity ............................ 99
        3.5.2  Complex Refractive Index ....................... 101
   3.6  X-Ray Spectroscopies .................................. 102
        3.6.1  Characteristic Times ........................... 103
        3.6.2  The Different Spectroscopies ................... 104
        3.6.3  Fluorescence and Auger Spectroscopies .......... 106
        3.6.4  XANES and RXS Formula .......................... 107
        3.6.5  Multipole Analysis ............................. 112
        3.6.6  X-Ray Magnetic Circular Dichroism .............. 118
   3.7  Monoelectronic Simulations ............................ 120
        3.7.1  The Potential .................................. 120
        3.7.2  The Multiple Scattering Theory ................. 121
        3.7.3  Available Codes ................................ 123
   3.8  Conclusion ............................................ 123
   References ................................................. 124
4  Synchrotron Radiation Sources and Optical Devices .......... 127
   D. Cocco and M. Zangrando
   4.1  Optics for UV and X-Ray ............................... 127
   4.2  Sources, Beamlines, and Monochromators for Soft
        X-Ray ................................................. 133
        4.2.1  SR Sources and Prefocusing or Heat Load
               Section ........................................ 133
        4.2.2  Soft X-Ray Monochromators and Diffraction
               Gratings ....................................... 138
        4.2.3  Refocusing Optics .............................. 142
   References ................................................. 143
5  X-Ray Magnetic Dichroism ................................... 145
   H. Wende and C. Antoniak
   5.1  Introduction .......................................... 145
   5.2  X-Ray Absorption Spectroscopy ......................... 146
        5.2.1  X-Ray Absorption Near-Edge Structure ........... 147
        5.2.2  Dichroism in X-Ray Absorption Spectroscopy ..... 148
   5.3  X-Ray Magnetic Circular Dichroism ..................... 149
        5.3.1  Determination of Orbital and Spin Magnetic
               Moments: Sum Rules ............................. 150
   5.4  Experimental Setup .................................... 152
   5.5  Data Analysis ......................................... 152
        5.5.1  Self-absorption and Saturation Effects
               in Electron Yield .............................. 152
        5.5.2  Standard Analysis .............................. 154
   5.6  Examples of Recent Research ........................... 155
        5.6.1  Failure of Sum Rule-based Analysis for Light
               3d Elements .................................... 156
        5.6.2  Spin-dependence of Matrix Elements in Rare
               Earths ......................................... 159
        5.6.3  Paramagnetic Biomolecules on Ferromagnetic
               Surfaces ....................................... 162
   5.7  Conclusions and Outlook ............................... 165
   References ................................................. 166
6  X-Ray Detected Optical Activity ............................ 169
   A. Rogalev, J. Goulon, F. Wilhelm, and A. Bosak
   6.1  Introduction .......................................... 169
   6.2  X-Ray Detected OA Tensor Formalism .................... 171
   6.3  Instrumentation and Experimental Considerations ....... 173
   6.4  Natural Optical Activity Detected with X-Rays ......... 176
        6.4.1  X-Ray Natural Circular Dichroism ............... 176
        6.4.2  Vector Part of X-Ray-detected OA ............... 180
   6.5  Nonreciprocal X-Ray-detected OA ....................... 182
        6.5.1  Nonreciprocal X-Ray Linear Dichroism ........... 182
        6.5.2  X-Ray Magnetochiral Dichroism: XM/D ............ 184
   6.6  Effective Operators for X-Ray Detected OA ............. 186
   References ................................................. 188
7  X-Ray Detected Magnetic Resonance: A New Spectroscopic
   Tool ....................................................... 191
   J. Goulon, A. Rogalev, F. Wilhelm, and G. Goujon
   7.1  Introduction .......................................... 191
   7.2  Precession Dynamics Probed with X-Rays ................ 193
        7.2.1  Phenomenological Equation of Motion ............ 193
        7.2.2  Precession Dynamics of Orbital and Spin
               Magnetization Components ....................... 195
        7.2.3  Precession Under High Pumping Power ............ 196
        7.2.4  Nonuniform Eigen Modes of Precession ........... 199
        7.2.5  Longitudinal and Transverse Relaxation Times ... 202
   7.3  Experimental Results .................................. 203
        7.3.1  Ferrimagnetic Iron Garnets ..................... 203
        7.3.2  Modular XDMR Spectrometer ...................... 205
        7.3.3  XDMR in Longitudinal Geometry .................. 207
        7.3.4  XDMR in Transverse Geometry .................... 213
   7.4  Facing New Challenges ................................. 220
   References ................................................. 221
8  Resonant X-Ray Scattering and Absorption ................... 223
   S.P. Collins and A. Bombardi
   8.1  Absorption and Scattering: The Optical Theorem ........ 223
   8.2  Symmetry and X-Ray Absorption ......................... 224
   8.3  X-Ray Scattering and Multipole Matrix Elements ........ 226
   8.4  Cartesian Tensors, Magnetism and Anisotropy ........... 228
   8.5  Neumann's Principle and Symmetry-restricted Tensors ... 231
   8.6  Scattering Matrix and Stokes Parameters ............... 232
   8.7  Diffraction Intensity and the Unit-Cell Structure
        Factor ................................................ 234
   8.8  Magnetic Symmetry, Propagation Vector, and the
        Magnetic Structure Factor ............................. 235
   8.9  Crystal Coordinates and Azimuthal Rotations ........... 238
   8.10 Spherical and Cartesian Tensors ....................... 239
   8.11 Example: HoFe2 ........................................ 242
   8.12 Example: ZnO .......................................... 248
   8.13 Example: Ca3Co2O6 ..................................... 253
   8.14 Conclusions ........................................... 261
   References ................................................. 261
9  An Introduction to Inelastic X-Ray Scattering .............. 263
   J.-P. Rueff
   9.1  Introduction .......................................... 263
   9.2  Theoretical Concepts .................................. 264
        9.2.1  Overview of the IXS Process .................... 264
        9.2.2  Interaction Hamiltonian ........................ 265
        9.2.3  IXS Cross Sections and Fermi Golden Rule ....... 266
        9.2.4  Nonresonant IXS ................................ 266
        9.2.5  RIXS ........................................... 269
   9.3  Applications of IXS ................................... 271
        9.3.1  Extreme Conditions ............................. 271
        9.3.2  Strongly Correlated Materials .................. 274
   9.4  Conclusion ............................................ 277
   References ................................................. 277
10 XAS and XMCD of Single Molecule Magnets .................... 279
   R. Sessoli, M. Mannini, F. Pineider, A. Cornia, and
   Ph. Sainctavit
   10.1 Introduction .......................................... 279
   10.2 Single Molecule Magnets ............................... 281
        10.2.1 Building Up a Large Spin ....................... 281
        10.2.2 Magnetic Anisotropy in Single Molecule \
               Magnets ........................................ 284
        10.2.3 The Dynamics of the Magnetization .............. 287
   10.3 Deposition of Single Molecule Magnets on Surfaces ..... 292
   10.4 XAS and XMCD of SMMs .................................. 295
        10.4.1 XAS and XMCD to Investigate the Electronic
               Structure of Mn12 Clusters ..................... 296
        10.4.2 XAS and XMCD of Monolayers of Mn12 SMMs ........ 298
        10.4.3 XMCD and Magnetic Anisotropy ................... 301
        10.4.4 XMCD and the Dynamics of the Magnetization ..... 305
   10.5 Conclusions ........................................... 307
   References ................................................. 308
11 Magnetic Structure of Actiniae Metals ...................... 313
   G. van der Laan and K.T. Moore
   11.1 Introduction .......................................... 313
   11.2 Volume Change Across the Actinide Series .............. 315
        11.2.1 Photoemission Spectroscopy's Two Cents ......... 316
   11.3 The Six Crystal Allotropes of Pu Metal ................ 317
        11.3.1 Lowering the Electronic Energy Through
               a Peierls-like Distortion ...................... 318
        11.3.2 Comparison with Cerium ......................... 319
        11.3.3 Stabilized δ-Plutonium ......................... 320
   11.4 Revised View of the Periodic Table .................... 321
   11.5 Actinide Magnetism .................................... 323
        11.5.1 Experimental Absence of Magnetic Moments in
               Plutonium ...................................... 323
        11.5.2 Looking to Other Elements for Clues ............ 325
   11.6 Experimental Complications of Plutonium ............... 325
   11.7 One Man's Electron Energy Loss is Another's X-Ray
        Absorption ............................................ 326
   11.8 Theory ................................................ 327
        11.8.1 Atomic Interactions ............................ 327
        11.8.2 LS- and jj-Coupling Schemes .................... 330
        11.8.3 Intermediate Coupling .......................... 332
        11.8.4 Moments for ƒ2 ................................. 333
   11.9 Spectral Calculations ................................. 335
   11.10 Spin-Orbit Interaction and Sum Rule Analysis ......... 336
   11.11 Validity of the Sum Rule ............................. 337
   11.12 Experimental Results for the N4,5 Edges .............. 339
        11.12.1 What Our Results Mean for Pu Theory ........... 341
   11.13 Conclusions .......................................... 342
   References ................................................. 342
12 Magnetic Imaging with X-rays ............................... 345
   F. Nolting
   12.1 Introduction .......................................... 345
   12.2 Concepts of Magnetic Imaging Contrast ................. 347
        12.2.1 XMCD Image ..................................... 348
        12.2.2 XMLD Images .................................... 351
        12.2.3 Polarization Control ........................... 354
        12.2.4 Local Spectra .................................. 355
        12.2.5 Spatial Resolution ............................. 356
   12.3 Realization of the Magnetic Contrast with Different
        Microscopes ........................................... 358
        12.3.1 Photoemission Electron Microscope .............. 358
        12.3.2 STXM/TXM ....................................... 359
        12.3.3 "Lensless" Imaging ............................. 361
        12.3.4 Combining Scanning Probes with X-Rays .......... 363
   12.4 Summary ............................................... 364
   References ................................................. 364
13 Domain Wall Spin Structures and Dynamics Probed by
   Synchrotron Techniques ..................................... 367
   M. Kläui
   13.1 Introduction .......................................... 367
   13.2 Techniques ............................................ 369
   13.3 Domain Wall Types and Wall Phase Diagrams ............. 369
        13.3.1 Theory of Head-to-Head Domain Wall Spin
               Structures ..................................... 369
        13.3.2 Experimental Determination of Head-to-Head
               Domain Wall Spin Structures .................... 371
        13.3.3 Further Head-to-Head Domain Wall Types ......... 373
   13.4 Domain Wall Dynamics .................................. 376
        13.4.1 Field-induced Domain Wall Propagation .......... 377
        13.4.2 Current-induced Domain Wall Propagation ........ 377
        13.4.3 Field- and Current-induced Domain Wall
               Excitations .................................... 380
   13.5 Summary ............................................... 382
   References ................................................. 382
14 Dynamics of Mesoscopic Magnetic Objects .................... 385
   C. Quitmann, J. Raabe, A. Puzic, K. Kuepper, and S. Wintz
   14.1 Introduction .......................................... 385
   14.2 Macroscopic vs. Mesoscopic Magnetic Objects ........... 386
        14.2.1 Magnetic Interactions and Domains .............. 386
        14.2.2 Magnetic Time Scales ........................... 388
        14.2.3 Magnetic Length Scales ......................... 389
        14.2.4 Landau-Lifshitz-Gilbert Equation ............... 389
        14.2.5 Experimental Techniques ........................ 391
   14.3 Dynamics in Simple Squares ............................ 392
        14.3.1 Static Mesoscopic Structures ................... 392
        14.3.2 Pulsed Field Excitations ....................... 394
   14.4 Vortex Dynamics and Switching ......................... 399
        14.4.1 Current Induced Resonant Vortex Core Motion .... 399
        14.4.2 Bistable Configurations by Pinning the Vortex
               Core ........................................... 401
        14.4.3 Resonant Burst Switching ....................... 402
   14.5 Summary ............................................... 403
   References ................................................. 404
15 From Third- to Fourth-Generation Light Sources: Free-
   Electron Lasers in the UV and X-ray Range .................. 407
   M. Altarelli
   15.1 Introduction .......................................... 407
   15.2 The SASE Process and Short-wavelength Free-Electron
        Lasers ................................................ 409
   15.3 First Results at FLASH and the Science Case for
        X-Ray FELs ............................................ 411
   15.4 The Quest for Hard X-Ray FELs ......................... 414
   15.5 Seeded Free-Electron Lasers ........................... 417
   References ................................................. 418

Contributors .................................................. 421


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:54 2019. Размер: 23,781 bytes.
Посещение N 1751 c 25.09.2012