Inan U.S. Numerical electromagnetics: the FDTD method (Cambridge; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаInan U.S. Numerical electromagnetics: the FDTD method / U.S.Inan, R.A.Marshall. - Cambridge; New York: Cambridge University Press, 2011. - Incl. bibl. ref. - Ind.: p.385-390. - ISBN 978-0-521-19069-5
 

Оглавление / Contents
 
   Preface ................................................... xiii

1  Introduction ................................................. 1
   1.1  Why FDTD? ............................................... 1
   1.2  Other methods ........................................... 2
        1.2.1  Finite volume time domain ........................ 2
        1.2.2  Finite difference frequency domain ............... 3
        1.2.3  Finite element methods ........................... 4
        1.2.4  Spectral methods ................................. 5
   1.3  Organization ............................................ 5
   References ................................................... 6
2  Review of electromagnetic theory ............................. 8
   2.1  Constitutive relations and material properties ......... 11
   2.2  Time-harmonic Maxwell's equations ...................... 13
   2.3  Complex permittivity: dielectric losses ................ 15
   2.4  Complex permeability: magnetic losses .................. 17
   2.5  Equivalent magnetic currents ........................... 17
   2.6  Electromagnetic potentials ............................. 19
   2.7  Electromagnetic boundary conditions .................... 21
   2.8  Electromagnetic waves .................................. 23
        2.8.1  The wave equation ............................... 25
        2.8.2  Group velocity .................................. 27
   2.9  The electromagnetic spectrum ........................... 28
   2.10 Summary ................................................ 30
   2.11 Problems ............................................... 32
   References .................................................. 33
3  Partial differential equations and physical systems ......... 34
   3.1  Classification of partial differential equations ....... 37
        3.1.1  Elliptic PDEs ................................... 38
        3.1.2  Parabolic PDEs .................................. 38
        3.1.3  Hyperbolic PDEs ................................. 39
   3.2  Numerical integration of ordinary differential
        equations .............................................. 41
        3.2.1  First-order Euler method ........................ 42
        3.2.2  The leapfrog method ............................. 44
        3.2.3  Runge-Kutta methods ............................. 45
   3.3  Finite difference approximations of partial
        differential equations ................................. 46
        3.3.1  Derivatives in time ............................. 48
        3.3.2  Derivatives in space ............................ 51
        3.3.3  Finite difference versions of PDEs .............. 52
   3.4  Finite difference solutions of the convection
        equation ............................................... 53
        3.4.1  The forward-time centered space method .......... 54
        3.4.2  The leapfrog method ............................. 57
        3.4.3  The Lax-Wendroff methods ........................ 60
   3.5  Finite difference methods for two coupled first-order
        convection equations ................................... 63
   3.6  Higher-order differencing schemes ...................... 65
   3.7  Summary ................................................ 67
   3.8  Problems ............................................... 68
   References .................................................. 71
4  The FDTD grid and the Yee algorithm ......................... 72
   4.1  Maxwell's equations in one dimension ................... 74
        4.1.1  Example ID simulations .......................... 77
   4.2  Maxwell's equations in two dimensions .................. 78
        4.2.1  Transverse electric (ТЕ) mode ................... 80
        4.2.2  Transverse magnetic (TM) mode ................... 81
        4.2.3  Example 2D simulations .......................... 82
   4.3  FDTD expressions in three dimensions ................... 84
        4.3.1  Example 3D simulation ........................... 87
   4.4  FDTD algorithm for lossy media ......................... 88
        4.4.1  ID waves in lossy media: waves on lossy
               transmission lines .............................. 88
        4.4.2  2D and 3D waves in lossy media .................. 90
   4.5  Divergence-free nature of the FDTD algorithm ........... 92
   4.6  The FDTD method in other coordinate systems ............ 93
        4.6.1  2D polar coordinates ............................ 94
        4.6.2  2D cylindrical coordinates ...................... 97
        4.6.3  3D cylindrical coordinates ..................... 101
        4.6.4  3D spherical coordinates ....................... 104
   4.7  Summary ............................................... 107
   4.8  Problems .............................................. 108
   References ................................................. 112
5  Numerical stability of finite difference methods ........... 113
   5.1  The convection equation ............................... 114
        5.1.1  The forward-time centered space method ......... 115
        5.1.2  The Lax method ................................. 116
        5.1.3  The leapfrog method ............................ 119
   5.2  Two coupled first-order convection equations .......... 120
        5.2.1  The forward-time centered space method ......... 121
        5.2.2  The Lax method ................................. 122
        5.2.3  The leapfrog method ............................ 124
        5.2.4  The interleaved leapfrog and FDTD method ....... 126
   5.3  Stability of higher dimensional FDTD algorithms ....... 127
   5.4  Summary ............................................... 128
   5.5  Problems .............................................. 129
   References ................................................. 131
6  Numerical dispersion and dissipation ....................... 132
   6.1  Dispersion of the Lax method .......................... 133
   6.2  Dispersion of the leapfrog method ..................... 136
   6.3  Dispersion relation for the FDTD algorithm ............ 140
        6.3.1  Group velocity ................................. 141
        6.3.2  Dispersion of the wave equation ................ 143
        6.3.3  Dispersion relation in 2D and 3D ............... 143
        6.3.4  Numerical dispersion of lossy Maxwell's
               equations ...................................... 145
   6.4  Numerical stability of the FDTD algorithm revisited ... 147
   6.5  Summary ............................................... 148
   6.6  Problems .............................................. 149
   References ................................................. 151
7  Introduction of sources .................................... 152
   7.1  Internal sources ...................................... 152
        7.1.1  Hard sources ................................... 152
        7.1.2  Current and voltage sources .................... 153
        7.1.3  The thin-wire approximation .................... 154
   7.2  External sources: total and scattered fields .......... 156
        7.2.1  Total-field and pure scattered-field
               formulations ................................... 158
   7.3  Total-field/scattered-field formulation ............... 159
        7.3.1  Example 2D TF/SF formulations .................. 162
   7.4  Total-field/scattered-field in three dimensions ....... 165
        7.4.1  Calculating the incident field ................. 168
   7.5  FDTD calculation of time-harmonic response ............ 168
   7.6  Summary ............................................... 169
   7.7  Problems .............................................. 170
   References ................................................. 173
8  Absorbing boundary conditions .............................. 174
   8.1  ABCs based on the one-way wave equation ............... 176
        8.1.1  First-order Mur boundary ....................... 176
        8.1.2  Higher dimensional wave equations:
               second-order Mur ............................... 177
        8.1.3  Higher-order Mur boundaries .................... 182
        8.1.4  Performance of the Mur boundaries .............. 184
        8.1.5  Mur boundaries in 3D ........................... 186
   8.2  Other radiation operators as ABCs ..................... 188
        8.2.1  Bayliss-Turkel operators ....................... 188
        8.2.2  Higdon operators ............................... 191
   8.3  Summary ............................................... 193
   8.4  Problems .............................................. 195
   References ................................................. 197
9  The perfectly matched layer ................................ 199
   9.1  Oblique incidence on a lossy medium ................... 200
        9.1.1  Uniform plane wave incident on general lossy
               media .......................................... 202
   9.2  The Berenger PML medium ............................... 205
        9.2.1  Berenger split-field PML in 3D ................. 209
        9.2.2  Grading the PML ................................ 210
        9.2.3  Example split-field simulation ................. 211
   9.3  Perfectly matched uniaxial medium ..................... 212
        9.3.1  Berenger's PML as an anisotropic medium ........ 217
   9.4  FDTD implementation of the UPML ....................... 218
   9.5  Alternative implementation via auxiliary fields ....... 222
   9.6  Convolutional perfectly matched layer (CPML) .......... 225
        9.6.1  Example simulation using the CPML .............. 228
   9.7  Summary ............................................... 231
   9.8  Problems .............................................. 233
   References ................................................. 235
10 FDTD modeling in dispersive media .......................... 237
   10.1 Recursive convolution method .......................... 238
        10.1.1 Debye materials ................................ 239
        10.1.2 Lorentz materials .............................. 244
        10.1.3 Drude materials ................................ 248
        10.1.4 Isotropic plasma ............................... 250
        10.1.5 Improvement to the Debye and Lorentz
               formulations ................................... 252
   10.2 Auxiliary differential equation method ................ 253
        10.2.1 Debye materials ................................ 254
        10.2.2 Formulation for multiple Debye poles ........... 254
        10.2.3 Lorentz materials .............................. 257
        10.2.4 Drude materials ................................ 259
   10.3 Summary ............................................... 260
   10.4 Problems .............................................. 262
   References ................................................. 264
11 FDTD modeling in anisotropic media ......................... 265
   11.1 FDTD method in arbitrary anisotropic media ............ 265
   11.2 FDTD in liquid crystals ............................... 268
        11.2.1 FDTD formulation ............................... 271
   11.3 FDTD in a magnetized plasma ........................... 274
        11.3.1 Implementation in FDTD ......................... 277
   11.4 FDTD in ferrites ...................................... 281
        11.4.1 Implementation in FDTD ......................... 284
   11.5 Summary ............................................... 287
   11.6 Problems .............................................. 288
   References ................................................. 290
12 Some advanced topics ....................................... 291
   12.1 Modeling periodic structures .......................... 291
        12.1.1 Direct-field methods ........................... 292
        12.1.2 Field-transformation methods ................... 296
   12.2 Modeling fine geometrical features .................... 302
        12.2.1 Diagonal split-cell model ...................... 302
        12.2.2 Average properties model ....................... 304
        12.2.3 The narrow slot ................................ 305
        12.2.4 Dey-Mittra techniques .......................... 306
        12.2.5 Thin material sheets ........................... 309
   12.3 Bodies of revolution .................................. 311
   12.4 Near-to-far field transformation ...................... 316
        12.4.1 Frequency domain formulation ................... 317
        12.4.2 Time domain implementation ..................... 320
   12.5 Summary ............................................... 323
   12.6 Problems .............................................. 324
   References ................................................. 326
13 Unconditionally stable implicit FDTD methods ............... 327
   13.1 Implicit versus explicit finite difference methods .... 328
        13.1.1 The forward-time centered space method ......... 328
        13.1.2 The backward-time centered space method ........ 329
   13.2 Crank-Nicolson methods ................................ 331
   13.3 Alternating direction implicit (ADI) method ........... 333
        13.3.1 Accuracy of the ADI method ..................... 337
   13.4 Summary ............................................... 339
   13.5 Problems .............................................. 339
   References ................................................. 340
14 Finite difference frequency domain ......................... 342
   14.1 FDFD via the wave equation ............................ 342
   14.2 Laplace matrix and Kronecker product .................. 345
   14.3 Wave equation in 2D ................................... 349
   14.4 Wave equation in 3D ................................... 351
   14.5 FDFD from Maxwell's equations ......................... 352
   14.6 Summary ............................................... 353
   14.7 Problems .............................................. 354
   References ................................................. 355
15 Finite volume and finite element methods ................... 356
   15.1 Irregular grids ....................................... 356
        15.1.1 Nonuniform, orthogonal grids ................... 357
        15.1.2 Nonorthogonal structured grids ................. 360
        15.1.3 Unstructured grids ............................. 360
   15.2 The finite volume method .............................. 361
        15.2.1 Maxwell's equations in conservative form ....... 362
        15.2.2 Interleaved finite volume method ............... 364
        15.2.3 The Yee finite volume method ................... 366
   15.3 The finite element method ............................. 368
        15.3.1 Example using Galerkin's method ................ 370
        15.3.2 ТЕ wave incident on a dielectric boundary ...... 375
   15.4 Discontinuous Galerkin method ......................... 377
   15.5 Summary ............................................... 382
   15.6 Problems .............................................. 383
   References ................................................. 383

   Index ...................................................... 385


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:54 2019. Размер: 19,219 bytes.
Посещение N 2130 c 25.09.2012