| Fraser K. Microarray image analysis: an algorithmic approach / K.Fraser, Z.Wang, X.Liu. - Boca Raton: Chapman & Hall/CRC, 2010. - xxiv, 311 p.: ill. - (Computer science and data analysis series). - Ref.: p.281-299. - Ind.: p.301-311. - ISBN 978-1-4200-9153-3
|
List of Figures .............................................. xiii
List of Algorithms ............................................ xix
Preface and Acknowledgments ................................... xxi
Biographies ................................................. xxiii
1 Introduction ................................................. 1
1.1 Overview ................................................ 2
1.2 Current state of art .................................... 3
1.3 Experimental approach ................................... 5
1.4 Key issues .............................................. 7
1.4.1 Noise reduction .................................. 8
1.4.2 Gene spot identification ......................... 8
1.4.3 Gene spot quantification ......................... 8
1.4.4 Slide and experiment normalization ............... 9
1.5 Contribution to knowledge .............................. 10
1.6 Structure of the book .................................. 13
2 Background .................................................. 17
2.1 Introduction ........................................... 17
2.2 Molecular biology ...................................... 18
2.2.1 Inheritance and the structure of DNA ............ 18
2.2.2 Central dogma ................................... 21
2.3 Microarray technology .................................. 22
2.3.1 Gene expression ................................. 22
2.3.2 Microarrays ..................................... 24
2.3.3 Process summary ................................. 26
2.3.4 Final output .................................... 27
2.4 Microarray analysis .................................... 30
2.4.1 Addressing ...................................... 31
2.4.2 Segmentation .................................... 33
2.4.3 Feature extraction .............................. 41
2.4.4 GenePix interpretation .......................... 42
2.4.5 Gene morphology ................................. 45
2.5 Copasetic microarray analysis framework overview ....... 47
2.6 Summary ................................................ 52
3 Data Services ............................................... 53
3.1 Introduction ........................................... 53
3.2 Image transformation engine ............................ 55
3.2.1 Surface artifacts ............................... 55
3.2.2 ITE precursor ................................... 59
3.2.3 The method ...................................... 63
3.3 Evaluation ............................................. 67
3.3.1 Experiment results .............................. 67
3.3.2 Strengths and weaknesses ........................ 75
3.4 Summary ................................................ 77
4 Structure Extrapolation ..................................... 79
4.1 Introduction ........................................... 79
4.2 Pyramidic contextual clustering ........................ 82
4.2.1 The algorithm ................................... 82
4.2.2 Analysis ........................................ 85
4.3 Evaluation ............................................. 90
4.3.1 Search grid analysis ............................ 90
4.3.2 Synthetic data .................................. 91
4.3.3 Real-world data ................................. 95
4.3.4 Strengths and weaknesses ........................ 97
4.4 Summary ................................................ 98
5 Structure Extrapolation II .................................. 99
5.1 Introduction ........................................... 99
5.2 Image layout - master blocks .......................... 101
5.2.1 The algorithm .................................. 103
5.2.2 Evaluation ..................................... 106
5.3 Image structure - meta-blocks ......................... 113
5.3.1 Stage one - create meta-block .................. 114
5.3.2 Stage two - external gene spot locations
(phase I) ...................................... 115
5.3.3 Stage three - internal gene spot locations
(phase I) ...................................... 117
5.3.4 Stage four - external gene spot locations
(phase II) ..................................... 119
5.3.5 Stage five - internal gene spot locations
(phase II) ..................................... 122
5.4 Summary ............................................... 125
6 Feature Identification ..................................... 127
6.1 Introduction .......................................... 127
6.2 Spatial binding ....................................... 129
6.2.1 Pyramidic contextual clustering - revisited .... 129
6.2.2 The method ..................................... 129
6.3 Evaluation of feature identification .................. 138
6.3.1 Finding a gene spot's location and
morphology ..................................... 140
6.3.2 Recovering weak genes .......................... 142
6.3.3 Strengths and weaknesses ....................... 146
6.4 Evaluation of copasetic microarray analysis
framework ............................................. 147
6.4.1 Peak signal-to-noise ratio for validation ...... 147
6.4.2 Strengths and weaknesses ....................... 149
6.5 Summary ............................................... 151
7 Feature Identification II .................................. 153
7.1 Background ............................................ 153
7.2 Proposed approach - subgrid detection ................. 158
7.2.1 Step 1: Filter the image ....................... 158
7.2.2 Step 2: Spot spacing calculation ............... 160
7.2.3 Step 3: Subgrid shape detection ................ 161
7.2.4 Step 4: SubGrid detection ...................... 169
7.3 Experimental results .................................. 175
7.4 Conclusions ........................................... 188
8 Chained Fourier Background Reconstruction .................. 189
8.1 Introduction .......................................... 189
8.2 Existing techniques ................................... 190
8.3 A new technique ....................................... 192
8.3.1 Description .................................... 193
8.3.2 Example and pseudo-code ........................ 194
8.4 Experiments and results ............................... 196
8.4.1 Dataset characteristics ........................ 196
8.4.2 Synthetic data ................................. 197
8.4.3 Real data ...................................... 198
8.5 Conclusions ........................................... 202
9 Graph-Cutting for Improving Microarray Gene Expression
Reconstructions ............................................ 205
9.1 Introduction .......................................... 205
9.2 Existing techniques ................................... 206
9.3 Proposed technique .................................... 209
9.3.1 Description .................................... 209
9.3.2 Pseudo-code and example ........................ 210
9.4 Experiments and results ............................... 211
9.4.1 Dataset characteristics ........................ 212
9.4.2 Synthetic data ................................. 212
9.4.3 Real data ...................................... 214
9.5 Conclusions ........................................... 217
10 Stochastic Dynamic Modeling of Short Gene Expression Time
Series Data ................................................ 219
10.1 Introduction .......................................... 219
10.2 Stochastic dynamic model for gene expression data ..... 221
10.3 An EM algorithm for parameter identification .......... 223
10.4 Simulation Results .................................... 228
10.4.1 Modeling of yeast gene expression time
series ......................................... 228
10.4.2 Modeling of virus gene expression time
series ......................................... 231
10.4.3 Modeling of human malaria and worm gene
expression time series ......................... 234
10.5 Discussions ........................................... 235
10.5.1 Model quality evaluation ....................... 235
10.5.2 Comparisons with existing modeling methods ..... 240
10.6 Conclusions and Future Work ........................... 242
11 Conclusions ................................................ 245
11.1 Introduction .......................................... 245
11.2 Achievements .......................................... 246
11.2.1 Noise reduction ................................ 247
11.2.2 Gene spot identification ....................... 249
11.2.3 Gene spot quantification ....................... 249
11.2.4 Slide and experiment normalization ............. 250
11.3 Contributions to microarray biology domain ............ 250
11.3.1 Technical ...................................... 250
11.3.2 Practical ...................................... 251
11.4 Contributions to computer science domain .............. 252
11.4.1 Technical ...................................... 253
11.4.2 Practical ...................................... 253
11.5 Future research topics ................................ 255
11.5.1 Image transformation engine .................... 255
11.5.2 Pyramidic contextual clustering ................ 256
11.5.3 Image layout and image structure ............... 256
11.5.4 Spatial binding ................................ 257
11.5.5 Combining microarray image channel data ........ 257
11.5.6 Other image sets ............................... 257
11.5.7 Distributed communication subsystems ........... 258
12 Appendices ................................................. 259
12.1 Appendix A: Microarray variants ....................... 259
12.1.1 Building the chips ............................. 259
12.1.2 Digital generation ............................. 261
12.2 Appendix B: Basic transformations ..................... 263
12.2.1 Linear transform generation .................... 263
12.2.2 Square root transform generation ............... 264
12.2.3 Inverse transform generation ................... 266
12.2.4 Movement transform generation ................. 267
12.3 Appendix C: Clustering ................................ 268
12.3.1 K-means algorithm .............................. 272
12.3.2 Fuzzy c-means algorithm ........................ 273
12.3.3 Hierarchical clustering ........................ 273
12.3.4 Distances ...................................... 275
12.4 Appendix D: A glance on mining gene expression data ... 275
12.4.1 Data analysis .................................. 276
12.4.2 New challenges and opportunities ............... 277
12.4.3 Data mining methods for gene expression
analysis ....................................... 278
12.5 Appendix E: Autocorrelation and GHT ................... 278
12.5.1 Autocorrelation ................................ 278
12.5.2 Generalized "circular" Hough transform ......... 279
References .................................................... 281
Index ......................................................... 301
|
|