Fraser K. Microarray image analysis: an algorithmic approach (Boca Raton, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFraser K. Microarray image analysis: an algorithmic approach / K.Fraser, Z.Wang, X.Liu. - Boca Raton: Chapman & Hall/CRC, 2010. - xxiv, 311 p.: ill. - (Computer science and data analysis series). - Ref.: p.281-299. - Ind.: p.301-311. - ISBN 978-1-4200-9153-3
 

Оглавление / Contents
 
List of Figures .............................................. xiii
List of Algorithms ............................................ xix
Preface and Acknowledgments ................................... xxi
Biographies ................................................. xxiii
1  Introduction ................................................. 1
   1.1  Overview ................................................ 2
   1.2  Current state of art .................................... 3
   1.3  Experimental approach ................................... 5
   1.4  Key issues .............................................. 7
        1.4.1  Noise reduction .................................. 8
        1.4.2  Gene spot identification ......................... 8
        1.4.3  Gene spot quantification ......................... 8
        1.4.4  Slide and experiment normalization ............... 9
   1.5  Contribution to knowledge .............................. 10
   1.6  Structure of the book .................................. 13
2  Background .................................................. 17
   2.1  Introduction ........................................... 17
   2.2  Molecular biology ...................................... 18
        2.2.1  Inheritance and the structure of DNA ............ 18
        2.2.2  Central dogma ................................... 21
   2.3  Microarray technology .................................. 22
        2.3.1  Gene expression ................................. 22
        2.3.2  Microarrays ..................................... 24
        2.3.3  Process summary ................................. 26
        2.3.4  Final output .................................... 27
   2.4  Microarray analysis .................................... 30
        2.4.1  Addressing ...................................... 31
        2.4.2  Segmentation .................................... 33
        2.4.3  Feature extraction .............................. 41
        2.4.4  GenePix interpretation .......................... 42
        2.4.5  Gene morphology ................................. 45
   2.5  Copasetic microarray analysis framework overview ....... 47
   2.6  Summary ................................................ 52
3  Data Services ............................................... 53
   3.1  Introduction ........................................... 53
   3.2  Image transformation engine ............................ 55
        3.2.1  Surface artifacts ............................... 55
        3.2.2  ITE precursor ................................... 59
        3.2.3  The method ...................................... 63
   3.3  Evaluation ............................................. 67
        3.3.1  Experiment results .............................. 67
        3.3.2  Strengths and weaknesses ........................ 75
   3.4  Summary ................................................ 77
4  Structure Extrapolation ..................................... 79
   4.1  Introduction ........................................... 79
   4.2  Pyramidic contextual clustering ........................ 82
        4.2.1  The algorithm ................................... 82
        4.2.2  Analysis ........................................ 85
   4.3  Evaluation ............................................. 90
        4.3.1  Search grid analysis ............................ 90
        4.3.2  Synthetic data .................................. 91
        4.3.3  Real-world data ................................. 95
        4.3.4  Strengths and weaknesses ........................ 97
   4.4  Summary ................................................ 98
5  Structure Extrapolation II .................................. 99
   5.1  Introduction ........................................... 99
   5.2  Image layout - master blocks .......................... 101
        5.2.1  The algorithm .................................. 103
        5.2.2  Evaluation ..................................... 106
   5.3  Image structure - meta-blocks ......................... 113
        5.3.1  Stage one - create meta-block .................. 114
        5.3.2  Stage two - external gene spot locations
               (phase I) ...................................... 115
        5.3.3  Stage three - internal gene spot locations
               (phase I) ...................................... 117
        5.3.4  Stage four - external gene spot locations
               (phase II) ..................................... 119
        5.3.5  Stage five - internal gene spot locations
               (phase II) ..................................... 122
   5.4  Summary ............................................... 125
6  Feature Identification ..................................... 127
   6.1  Introduction .......................................... 127
   6.2  Spatial binding ....................................... 129
        6.2.1  Pyramidic contextual clustering - revisited .... 129
        6.2.2  The method ..................................... 129
   6.3  Evaluation of feature identification .................. 138
        6.3.1  Finding a gene spot's location and
               morphology ..................................... 140
        6.3.2  Recovering weak genes .......................... 142
        6.3.3  Strengths and weaknesses ....................... 146
   6.4  Evaluation of copasetic microarray analysis
        framework ............................................. 147
        6.4.1  Peak signal-to-noise ratio for validation ...... 147
        6.4.2  Strengths and weaknesses ....................... 149
   6.5  Summary ............................................... 151
7  Feature Identification II .................................. 153
   7.1  Background ............................................ 153
   7.2  Proposed approach - subgrid detection ................. 158
        7.2.1  Step 1: Filter the image ....................... 158
        7.2.2  Step 2: Spot spacing calculation ............... 160
        7.2.3  Step 3: Subgrid shape detection ................ 161
        7.2.4  Step 4: SubGrid detection ...................... 169
   7.3  Experimental results .................................. 175
   7.4  Conclusions ........................................... 188
8  Chained Fourier Background Reconstruction .................. 189
   8.1  Introduction .......................................... 189
   8.2  Existing techniques ................................... 190
   8.3  A new technique ....................................... 192
        8.3.1  Description .................................... 193
        8.3.2  Example and pseudo-code ........................ 194
   8.4  Experiments and results ............................... 196
        8.4.1  Dataset characteristics ........................ 196
        8.4.2  Synthetic data ................................. 197
        8.4.3  Real data ...................................... 198
   8.5  Conclusions ........................................... 202
9  Graph-Cutting for Improving Microarray Gene Expression
   Reconstructions ............................................ 205
   9.1  Introduction .......................................... 205
   9.2  Existing techniques ................................... 206
   9.3  Proposed technique .................................... 209
        9.3.1  Description .................................... 209
        9.3.2  Pseudo-code and example ........................ 210
   9.4  Experiments and results ............................... 211
        9.4.1  Dataset characteristics ........................ 212
        9.4.2  Synthetic data ................................. 212
        9.4.3  Real data ...................................... 214
   9.5  Conclusions ........................................... 217
10 Stochastic Dynamic Modeling of Short Gene Expression Time
   Series Data ................................................ 219
   10.1 Introduction .......................................... 219
   10.2 Stochastic dynamic model for gene expression data ..... 221
   10.3 An EM algorithm for parameter identification .......... 223
   10.4 Simulation Results .................................... 228
        10.4.1 Modeling of yeast gene expression time
               series ......................................... 228
        10.4.2 Modeling of virus gene expression time
               series ......................................... 231
        10.4.3 Modeling of human malaria and worm gene
               expression time series ......................... 234
   10.5 Discussions ........................................... 235
        10.5.1 Model quality evaluation ....................... 235
        10.5.2 Comparisons with existing modeling methods ..... 240
   10.6 Conclusions and Future Work ........................... 242
11 Conclusions ................................................ 245
   11.1 Introduction .......................................... 245
   11.2 Achievements .......................................... 246
        11.2.1 Noise reduction ................................ 247
        11.2.2 Gene spot identification ....................... 249
        11.2.3 Gene spot quantification ....................... 249
        11.2.4 Slide and experiment normalization ............. 250
   11.3 Contributions to microarray biology domain ............ 250
        11.3.1 Technical ...................................... 250
        11.3.2 Practical ...................................... 251
   11.4 Contributions to computer science domain .............. 252
        11.4.1 Technical ...................................... 253
        11.4.2 Practical ...................................... 253
   11.5 Future research topics ................................ 255
        11.5.1 Image transformation engine .................... 255
        11.5.2 Pyramidic contextual clustering ................ 256
        11.5.3 Image layout and image structure ............... 256
        11.5.4 Spatial binding ................................ 257
        11.5.5 Combining microarray image channel data ........ 257
        11.5.6 Other image sets ............................... 257
        11.5.7 Distributed communication subsystems ........... 258
12 Appendices ................................................. 259
   12.1 Appendix A: Microarray variants ....................... 259
        12.1.1 Building the chips ............................. 259
        12.1.2 Digital generation ............................. 261
   12.2 Appendix B: Basic transformations ..................... 263
        12.2.1 Linear transform generation .................... 263
        12.2.2 Square root transform generation ............... 264
        12.2.3 Inverse transform generation ................... 266
        12.2.4  Movement transform generation ................. 267
   12.3 Appendix C: Clustering ................................ 268
        12.3.1 K-means algorithm .............................. 272
        12.3.2 Fuzzy c-means algorithm ........................ 273
        12.3.3 Hierarchical clustering ........................ 273
        12.3.4 Distances ...................................... 275
   12.4 Appendix D: A glance on mining gene expression data ... 275
        12.4.1 Data analysis .................................. 276
        12.4.2 New challenges and opportunities ............... 277
        12.4.3 Data mining methods for gene expression
               analysis ....................................... 278
   12.5 Appendix E: Autocorrelation and GHT ................... 278
        12.5.1 Autocorrelation ................................ 278
        12.5.2 Generalized "circular" Hough transform ......... 279

References .................................................... 281
Index ......................................................... 301


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:54 2019. Размер: 15,865 bytes.
Посещение N 1532 c 25.09.2012