Analytic and algebraic geometry: common problems, different methods (Providence, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаAnalytic and algebraic geometry: common problems, different methods / ed. by J.McNeal, M.Mustaţă. - Providence: American Mathematical Society; Institute for Advanced Study, 2010. - xiv, 583 p. - (IAS/Park City mathematics series; vol.17). - Incl. bibl. ref. - ISBN 978-0-8218-4908-8
 

Оглавление / Contents
 
Preface ...................................................... xiii

Jeffery McNeal and Mircea Mustaţă
Introduction .................................................... 1

Bo Berndtsson
An Introduction to Things ....................................... 7
Introduction .................................................... 9

Lecture 1  The one-dimensional case  ........................... 11
1.1  The fig.1-equation in one variable ............................ 11
1.2  An alternative proof of the basic identity  ............... 14
1.3  An application: Inequalities of Brunn-Minkowski type ...... 14
1.4  Regularity - a disclaimer ................................. 16

Lecture 2  Functional analytic interlude ....................... 19
2.1  Dual formulation of the fig.1-problem ......................... 19

Lecture 3  The fig.1-equation on a complex manifold ................ 25
3.1  Metrics ................................................... 25
3.2  Norms of forms ............................................ 27
3.3  Line bundles .............................................. 29
3.4  Calculation of the adjoint and the basic identity ......... 33
3.5  The main existence theorem and L2-estimate for compact
     manifolds ................................................. 35
3.6  Complete Kähler manifolds ................................. 37

Lecture 4  The Bergman kernel .................................. 43
4.1  Generalities .............................................. 43
4.2  Bergman kernels associated to complex line bundles ........ 46

Lecture 5  Singular metrics and the Kawamata-Viehweg
           vanishing theorem ................................... 51
5.1  The Demailly-Nadel vanishing theorem ...................... 51
5.2  The Kodaira embedding theorem ............................. 54
5.3  The Kawamata-Viehweg vanishing theorem .................... 55

Lecture 6  Adjunction and extension from divisors .............. 59
6.1  Adjunction and the currents defined by divisors ........... 59
6.2  The Ohsawa-Takegoshi extension theorem .................... 62

Lecture 7  Deformational invariance of plurigenera ............. 71
7.1  Extension of pluricanonical forms ......................... 71
     Bibliography .............................................. 75

John P. D'Angelo
Real and Complex Geometry meet the Cauchy-Riemann Equations .... 77
Preface ........................................................ 79

Lecture 1  Background material ................................. 81
1  Complex linear algebra ...................................... 81
2  Differential forms .......................................... 82
3  Solving the Cauchy-Riemann equations ........................ 84

Lecture 2  Complex varieties in real hypersurfaces ............. 87
1  Degenerate critical points of smooth functions .............. 87
2  Hermitian symmetry and polarization ......................... 89
3  Holomorphic decomposition ................................... 90
4  Real analytic hypersurfaces and subvarieties ................ 98
5  Complex varieties, local algebra, and multiplicities ........ 99

Lecture 3  Pseudoconvexity, the Levi form, and points of
           finite type ........................................ 105
1  Euclidean convexity ........................................ 105
2  The Levi form .............................................. 107
3  Higher order commutators ................................... 111
4  Points of finite type ...................................... 113
5  Commutative algebra ........................................ 116
6  A return to finite type .................................... 121
7  The set of finite type points is open ...................... 126

Lecture 4  Kohn's algorithm for subelliptic multipliers ....... 129
1  Introduction ............................................... 129
2  Subelliptic estimates ...................................... 130
3  Kohn's algorithm ........................................... 133
4  Kohn's algorithm for holomorphic and formal germs .......... 134
5  Failure of effectiveness for Kohn's algorithm .............. 139
6  Triangular systems ......................................... 140
7  Additional remarks ......................................... 144

Lecture 5  Connections with partial differential equations .... 147
1  Finite type conditions ..................................... 147
2  Local regularity for fig.1 ..................................... 149
3  Hypoellipticity, global regularity, and compactness ........ 150
4  An introduction to L2-estimates ............................ 152

Lecture 6  Positivity conditions .............................. 157
1  Introduction ............................................... 157
2  The classes fig.2k ............................................. 158
3  Intermediate conditions .................................... 159
4  The global Cauchy-Schwarz inequality ....................... 161
5  A complicated example ...................................... 164
6  Stabilization in the bihomogeneous polynomial case ......... 166
7  Squared norms and proper mappings between balls ............ 171
8  Holomorphic line bundles ................................... 173

Lecture 7  Some open problems ................................. 175
   Bibliography ............................................... 177

Dror Varolin
Three Variations on a Theme in Complex Analytic Geometry ...... 183

Lecture 8.   Basic notions in complex geometry ................ 189
1  Complex manifolds .......................................... 189
2  Connections ................................................ 199
3  Curvature .................................................. 207
4  Holomorphic line bundles ................................... 210

Lecture 1  The Hörmander theorem .............................. 217
1  Functional analysis ........................................ 218
2  The Bochner-Kodaira identity ............................... 219
3  Manifolds with boundary .................................... 226
4  Density of smooth forms in the graph norm .................. 229
5  Hörmander's theorem ........................................ 234
6  Singular Hermitian metrics for line bundles ................ 236
7  Application: Kodaira embedding theorem ..................... 239
8  Multiplier ideal sheaves and Nadel's Theorems .............. 242
9  Exercises .................................................. 248

Lecture 2  The L2 extension theorem ........................... 251
1  L2 extension ............................................... 251
2  The deformation invariance of plurigenera .................. 259
3  Pluricanonical extension on projective manifolds ........... 265
4  Exercises .................................................. 275

Lecture 3  The Skoda division theorem ......................... 277
1  Statement of the division theorem .......................... 277
2  Proof of the division theorem .............................. 278
3  Global generation of multiplier ideal sheaves .............. 286
4  Exercises .................................................. 290
   Bibliography ............................................... 293

Jean-Pierre Demailly
Structure Theorems for Projective and Kähler Varieties ........ 295
0  Introduction ............................................... 297
1  Numerically effective and pseudo-effective (1,1) classes ... 298
   1.A. Pseudo-effective line bundles and metrics with
        minimal singularities ................................. 298
   1.B. Nef line bundles ...................................... 300
   1.C. Description of the positive cones ..................... 302
   1.D. The Kawamata-Viehweg vanishing theorem ................ 306
   1.E. A uniform global generation property due to 
        Y.T. Siu .............................................. 308
   1.F. Hard Lefschetz theorem with multiplier ideal 
        sheaves ............................................... 309
2  Holomorphic Morse inequalities ............................. 310
3  Approximation of closed positive (l,l)-currents by 
   divisors ................................................... 312
   3.A. Local approximation theorem through Bergman kernels ... 312
   3.B. Global approximation of closed (l,l)-currents on 
        a compact complex manifold ............................ 314
   3.C. Global approximation by divisors ...................... 320
   3.D. Singularity exponents and log canonical thresholds .... 326
4  Subadditivity of multiplier ideals and Fujita's 
   approximate Zariski decomposition theorem .................. 329
5  Numerical characterization of the Kähler cone .............. 334
   5.A. Positive classes in intermediate (p,p) bidegrees ...... 334
   5.B. Numerically positive classes of type (1,1) ............ 335
   5.C. Deformations of compact Kähler manifolds .............. 341
6  Structure of the pseudo-effective cone and mobile
   intersection theory ........................................ 343
   6.A. Classes of mobile curves and of mobile (n — 1, 
        n — l)-currents ....................................... 343
   6.B. Zariski decomposition and mobile intersections ........ 346
   6.C. The orthogonality estimate ............................ 352
   6.D. Dual of the pseudo-effective cone ..................... 354
7  Super-canonical metrics and abundance ...................... 357
   8.A. Construction of super-canonical metrics ............... 357
   7.B. Invariance of plurigenera and positivity of 
        curvature of super-canonical metrics .................. 363
   7.C. Tsuji's strategy for studying abundance ............... 364
8  Siu's analytic approach and Păun's non vanishing theorem ... 365
   Bibliography ............................................... 367

Mihai Păun
Lecture Notes on Rational Polytopes and Finite Generation ..... 371
0  Introduction ............................................... 373
1  Basic definitions and notations ............................ 374
2  Proof of (i) ............................................... 376
   2.1  The case nd({Kx + Yτ0 + A}) = 0 ....................... 377
   2.2  The "x method" for sequences .......................... 378
   2.3  The induced polytope and its properties ............... 382
3  Proof of (ii) .............................................. 390
   3.1  The first step ........................................ 393
   3.2  Iteration scheme ...................................... 399
   3.1  References ............................................ 402

Mircea Mustaţă
Introduction to Resolution of Singularities ................... 405

Lecture 1  Resolutions and principalizations .................. 409
1.1  The main theorems ........................................ 409
1.2  Strengthenings of Theorem 1.3 ............................ 410
1.3  Historical comments ...................................... 414

Lecture 2  Marked ideals ...................................... 415
2.1  Marked ideals ............................................ 415
2.2  Derived ideals ........................................... 419

Lecture 3  Hypersurfaces of maximal contact and coefficient
           ideals ............................................. 423
3.1  Hypersurfaces of maximal contact ......................... 423
3.2  The coefficient ideal .................................... 424

Lecture 4  Homogenized ideals ................................. 431
4.1  Basics of homogenized ideals ............................. 431
4.2  Comparing hypersurfaces of maximal contact: formal
     equivalence .............................................. 433
4.3  Comparing hypersurfaces of maximal contact: etale
     equivalence .............................................. 434

Lecture 5  Proof of principalization .......................... 437
5.1  The statements ........................................... 437
5.2  Part I: the maximal order case ........................... 438
5.3  Part II: the general case ................................ 442
5.4  Proof of principalization ................................ 445
     Bibliography ............................................. 449

Robert Lazarsfeld
A Short Course on Multiplier Ideals ........................... 451
Introduction .................................................. 453

Lecture 1  Construction and examples of multiplier ideals ..... 455
Definition of multiplier ideals ............................... 455
Monomial ideals ............................................... 459
Invariants defined by multiplier ideals ....................... 460

Lecture 2  Vanishing theorems for multiplier ideals ........... 463
The Kawamata-Viehweg-Nadel vanishing theorem .................. 463
Singularities of plane curves and projective hypersurfaces .... 465
Singularities of theta divisors ............................... 467
Uniform global generation ..................................... 468

Lecture 3  Local properties of multiplier ideals .............. 471
Adjoint ideals and the restriction theorem .................... 471
The subadditivity theorem ..................................... 474
Skoda's theorem ............................................... 475

Lecture 4  Asymptotic constructions ........................... 479
Asymptotic multiplier ideals .................................. 479
Variants ...................................................... 482
Étale multiplicativity of plurigenera ......................... 484
A comparison theorem for symbolic powers ...................... 485

Lecture 5  Extension theorems and deformation invariance of
           plurigenera ........................................ 487
Bibliography .................................................. 493

János Kollár
Exercises in the Birational Geometry of Algebraic Varieties ... 495
1  Birational classification of algebraic surfaces ............ 497
2  Naive minimal models ....................................... 498
3  The cone of curves ......................................... 503
4  Singularities .............................................. 508
5  Flips ...................................................... 513
6  Minimal models ............................................. 518
   Bibliography ............................................... 523

Christopher D. Hacon
Higher Dimensional Minimal Model Program for Varieties of
Log General Type .............................................. 525
Introduction .................................................. 527

Lecture 1  Pl-flips ........................................... 531

Lecture 2  Multiplier ideal sheaves ........................... 535
Asymptotic multiplier ideal sheaves ........................... 538
Extending pluricanonical forms ................................ 540

Lecture 3  Finite generation of the restricted algebra ........ 545
Rationality of the restricted algebra ......................... 545
Proof of (1.10) ............................................... 546

Lecture 4  The minimal model program with scaling ............. 547
Solutions to the exercises .................................... 551
Bibliography .................................................. 555

Alessio Corti, Paul Hacking, János Kollár, Robert 
Lazarsfeld, and Mircea Mustaţă
Lectures on Flips and Minimal Models .......................... 557

Lecture 1  Extension theorems ................................. 561
1.1  Multiplier and adjoint ideals ............................ 561
1.2  Proof of the Main Lemma .................................. 563

Lecture 2  Existence of flips I ............................... 565
2.1  The setup ................................................ 565
2.2  Adjoint algebras ......................................... 566
2.3  The Hacon-McKernan extension theorem ..................... 567
2.4  The restricted algebra as an adjoint algebra ............. 567

Lecture 3  Existence of flips II .............................. 571

Lecture 4  Notes on Birkar-Cascini-Hacon-McKernan ............. 575
4.1  Comparison of 3 MMP's .................................... 576
4.2  MMP with scaling ......................................... 578
4.3  MMP with scaling near |Δ| ................................ 578
4.4  Bending it like BCHM ..................................... 579
4.5  Finiteness of models ..................................... 581
     Bibliography ............................................. 583


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:42 2019. Размер: 20,980 bytes.
Посещение N 1769 c 31.07.2012