Vecer J. Stochastic finance: a numeraire approach (Boca Raton, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаVecer J. Stochastic finance: a numeraire approach. - Boca Raton: CRC Press, 2011. - xv, 326 p.: ill. - (Chapman & Hall/CRC financial mathematics series). - Ref.: p.313-322. - Ind.: p.323-326. – ISBN 978-1-4398-1250-1
 

Оглавление / Contents
 
Introduction ................................................... ix

1  Elements of Finance ........................................... 1
   1.1  Price .................................................... 3
   1.2  Arbitrage ............................................... 11
   1.3  Time Value of Assets, Arbitrage and No-Arbitrage
        Assets .................................................. 14
   1.4  Money Market, Bonds, and Discounting .................... 17
   1.5  Dividends ............................................... 20
   1.6  Portfolio ............................................... 21
   1.7  Evolution of a Self-Financing Portfolio ................. 23
   1.8  Fundamental Theorems of Asset Pricing ................... 28
   1.9  Change of Measure via Radon-Nikodym Derivative .......... 44
   1.10 Leverage: Forwards and Futures .......................... 48
2  Binomial Models .............................................. 59
   2.1  Binomial Model for No-Arbitrage Assets .................. 60
        2.1.1  One-Step Model ................................... 61
        2.1.2  Hedging in the Binomial Model .................... 65
        2.1.3  Multiperiod Binomial Model ....................... 66
        2.1.4  Numerical Example ................................ 67
        2.1.5  Probability Measures for Exotic No-Arbitrage
               Assets ........................................... 73
   2.2  Binomial Model with an Arbitrage Asset .................. 75
        2.2.1  American Option Pricing in the Binomial Model .... 78
        2.2.2  Hedging .......................................... 79
        2.2.3  Numerical Example ................................ 81
3  Diffusion Models ............................................. 91
   3.1  Geometric Brownian Motion ............................... 93
   3.2  General European Contracts .............................. 99
   3.3  Price as an Expectation ................................ 109
   3.4  Connections with Partial Differential Equations ........ 111
   3.5  Money as a Reference Asset ............................. 114
   3.6  Hedging ................................................ 117
   3.7  Properties of European Call and Put Options ............ 122
   3.8  Stochastic Volatility Models ........................... 127
   3.9  Foreign Exchange Market ................................ 130
        3.9.1  Forwards ........................................ 131
        3.9.2  Options ......................................... 133
4  Interest Rate Contracts ..................................... 137
   4.1  Forward LIBOR .......................................... 138
        4.1.1  Backset LIBOR ................................... 139
        4.1.2  Caplet .......................................... 140
   4.2  Swaps and Swaptions .................................... 141
   4.3  Term Structure Models .................................. 143
5  Barrier Options ............................................. 149
   5.1  Types of Barrier Options ............................... 150
   5.2  Barrier Option Pricing via Power Options ............... 152
        5.2.1  Constant Barrier ................................ 152
        5.2.2  Exponential Barrier ............................. 157
   5.3  Price of a Down-and-In Call Option ..................... 160
   5.4  Connections with the Partial Differential Equations .... 165
6  Lookback Options ............................................ 171
   6.1  Connections of Lookbacks with Barrier Options .......... 171
        6.1.1  Case α = 1 ...................................... 173
        6.1.2  Case α < 1 ...................................... 174
        6.1.3  Hedging ......................................... 178
   6.2  Partial Differential Equation Approach for Lookbacks ... 180
   6.3  Maximum Drawdown ....................................... 187
7  American Options ............................................ 191
   7.1  American Options on No-Arbitrage Assets ................ 192
   7.2  American Call and Puts on Arbitrage Assets ............. 194
   7.3  Perpetual American Put ................................. 195
   7.4  Partial Differential Equation Approach ................. 199
8  Contracts on Three or More Assets: Quantos, Rainbows
   and "Friends" ............................................... 207
   8.1  Pricing in the Geometric Brownian Motion Model ......... 209
   8.2  Hedging ................................................ 213
9  Asian Options ............................................... 219
   9.1  Pricing in the Geometric Brownian Motion Model ......... 226
   9.2  Hedging of Asian Options ............................... 230
   9.3  Reduction of the Pricing Equations ..................... 233
10 Jump Models ................................................. 239
   10.1 Poisson Process ........................................ 240
   10.2 Geometric Poisson Process .............................. 243
   10.3 Pricing Equations ...................................... 248
   10.4 European Call Option in Geometric Poisson Model ........ 251
   10.5 Levy Models with Multiple Jump Sizes ................... 256

A  Elements of Probability Theory .............................. 267
   A.l  Probability, Random Variables .......................... 267
   A.2  Conditional Expectation ................................ 271
        A.2.1  Some Properties of Conditional Expectation ...... 274
   A.3  Martingales ............................................ 274
   A.4  Brownian Motion ........................................ 279
   A.5  Stochastic Integration ................................. 283
   A.6  Stochastic Calculus .................................... 285
   A.7  Connections with Partial Differential Equations ........ 287

Solutions to Selected Exercises ................................ 293

References ..................................................... 313

Index .......................................................... 323


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:40 2019 Размер: 9,867 bytes.
Посещение N 1411 c 17.07.2012