Oxley J. Title Matroid theory (Oxford; New York, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаOxley J. Matroid theory. - 2nd ed. - Oxford; New York: Oxford University Press, 2011. - xiii, 684 p.: ill. - Ref.: p. 608-638. - Ind.: p.668-684. – ISBN 978-0-19-960339-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preliminaries ................................................... 1

1  Basic definitions and examples ............................... 7
   1.1  Independent sets and circuits ........................... 7
   1.2  Bases .................................................. 15
   1.3  Rank ................................................... 20
   1.4  Closure ................................................ 25
   1.5  Geometric representations of matroids of small rank .... 32
   1.6  Transversal matroids ................................... 43
   1.7  The lattice of flats ................................... 48
   1.8  The greedy algorithm ................................... 58
2  Duality ..................................................... 64
   2.1  The definition and basic properties .................... 64
   2.2  Duals of representable matroids ........................ 77
   2.3  Duals of graphic matroids .............................. 87
   2.4  Duals of transversal matroids .......................... 93
3  Minors ..................................................... 100
   3.1  Contraction ........................................... 100
   3.2  Minors of certain classes of matroids ................. 106
   3.3  The Scum Theorem, projection, and flats ............... 113
4  Connectivity ............................................... 118
   4.1  Connectivity for graphs and matroids .................. 118
   4.2  Properties of matroid connectivity .................... 122
   4.3  More properties of connectivity ....................... 126
5  Graphic matroids ........................................... 135
   5.1  Representability ...................................... 135
   5.2  Duality in graphic matroids ........................... 140
   5.3  Whitney's 2-Isomorphism Theorem ....................... 145
   5.4  Series-parallel networks .............................. 151
6  Representable matroids ..................................... 158
   6.1  Projective geometries ................................. 159
   6.2  Affine geometries ..................................... 170
   6.3  Different matroid representations ..................... 176
   6.4  Constructing representations for matroids ............. 181
   6.5  Representability over finite fields ................... 192
   6.6  Regular matroids ...................................... 204
   6.7  Algebraic matroids .................................... 211
   6.8  Characteristic sets and decidability .................. 220
   6.9  Modularity ............................................ 228
   6.10 Dowling geometries .................................... 235
7  Constructions .............................................. 251
   7.1  Series and parallel connection and 2-sums ............. 251
   7.2  Single-element extensions ............................. 264
   7.3  Quotients and related operations ...................... 272
   7.4  A non-commutative operation ........................... 282
8  Higher connectivity ........................................ 291
   8.1  Tutte's definition .................................... 291
   8.2  Properties of the connectivity function ............... 296
   8.3  3-connected matroids and 2-sums ....................... 304
   8.4  Wheels and whirls ..................................... 316
   8.5  Tutte's Linking Theorem and its applications .......... 319
   8.6  Matroid versus graph connectivity ..................... 324
   8.7  Some extremal connectivity results .................... 332
   8.8  Tutte's Wheels-and-Whirls Theorem ..................... 337
9  Binary matroids ............................................ 344
   9.1  Characterizations ..................................... 344
   9.2  Circuit and cocircuit spaces .......................... 349
   9.3  The operation of 3-sum ................................ 353
   9.4  Other special properties .............................. 360
10 Excluded-minor theorems .................................... 372
   10.1 The characterization of regular matroids .............. 372
   10.2 The characterization of ternary matroids .............. 380
   10.3 The characterization of graphic matroids .............. 385
   10.4 Further properties of regular and graphic matroids .... 398
11 Submodular functions and matroid union ..................... 404
   11.1 Deriving matroids from submodular functions ........... 404
   11.2 The theorems of Hall and Rado ......................... 411
   11.3 Matroid union and its applications .................... 427
   11.4 Amalgams and the generalized parallel connection ...... 436
   11.5 Generalizations of delta-wye exchange ................. 448
12 The Splitter Theorem ....................................... 457
   12.1 The theorem and its proof ............................. 457
   12.2 Applications of the Splitter Theorem .................. 465
   12.3 Variations on the Splitter Theorem .................... 477
13 Seymour's Decomposition Theorem ............................ 489
   13.1 Overview .............................................. 489
   13.2 Graphic, cographic, or a special minor ................ 494
   13.3 Blocking sequences .................................... 507
   13.4 R12-minors ............................................. 517
14 Research in representability and structure ................. 525
   14.1 The Well-Quasi-Ordering Conjecture for Matroids ....... 525
   14.2 Branch-width .......................................... 529
   14.3 Rota's Conjecture and the Well-Quasi-Ordering
        Conjecture ............................................ 536
   14.4 Algorithmic consequences .............................. 540
   14.5 Intertwining .......................................... 543
   14.6 Inequivalent representations .......................... 550
   14.7 Ternary, matroids ..................................... 555
   14.8 Stabilizers ........................................... 561
   14.9 Unavoidable minors .................................... 569
   14.10 Growth rates ......................................... 570
15 Unsolved problems .......................................... 583
   15.1 Representability: linear and algebraic ................ 584
   15.2 Unimodal conjectures .................................. 585
   15.3 Critical problems ..................................... 588
   15.4 From graphs to matroids ............................... 591
   15.5 Enumeration ........................................... 593
   15.6 Gammoids and transversal matroids ..................... 598
   15.7 Excluding a uniform matroid ........................... 599
   15.8 Negative correlation .................................. 600
   15.9 A miscellany .......................................... 604

References .................................................... 608
Appendix: Some interesting matroids ........................... 639
List of tables ................................................ 665
Notation ...................................................... 666
Index ......................................................... 668


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:40 2019 Размер: 10,932 bytes.
Посещение N 1592 c 17.07.2012