Liu G.R. Smoothed finite element methods (Boca Raton; London, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLiu G.R. Smoothed finite element methods / G.R.Liu, N.T.Trung. - Boca Raton; London: CRC, Taylor & Francis, 2010. - xx, 671 p.: ill. - Incl. bibl. ref. - Ind.: p.647-671. - ISBN 978-1-4398-2027-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ....................................................... xvu
Authors ....................................................... xix
1  Introduction ................................................. 1
   1.1  Physical Problems in Engineering ........................ 1
   1.2  Numerical Techniques: Practical Solution Tools .......... 2
   1.3  Why S-FEM? .............................................. 5
   1.4  The Idea of S-FEM ....................................... 8
   1.5  Key Techniques Used in S-FEM ............................ 9
   1.6  S-FEM Models and Properties ............................. 9
   1.7  Some Historical Notes .................................. 11
   1.8  Outline of the Book .................................... 12
   References .................................................. 15
2  Basic Equations for Solid Mechanics ......................... 21
   2.1  Equilibrium Equation: In Stresses ...................... 21
   2.2  Constitutive Equation .................................. 23
   2.3  Compatibility Equation ................................. 23
   2.4  Equilibrium Equation: In Displacements ................. 23
   2.5  Equations in Matrix Form ............................... 24
   2.6  Boundary Conditions .................................... 26
   2.7  Some Standard Default Conventions and Notations ........ 27
   2.8  Remarks ................................................ 28
   References .................................................. 30
3  The Finite Element Method ................................... 31
   3.1  General Procedure of FEM ............................... 31
   3.2  Proper Spaces .......................................... 35
   3.4  Domain Discretization: Creation of Finite-Dimensional
        Space .................................................. 48
   3.5  Creation of Shape Functions ............................ 48
   3.6  Displacement Function Creation ......................... 53
   3.7  Strain Evaluation ...................................... 54
   3.8  Formulation of the Discretized System of Equations ..... 55
   3.9  FEM Solution: Existence, Uniqueness, Error, and
        Convergence ............................................ 57
   3.10 Some Other Properties of the FEM Solution .............. 59
   3.11 Linear Triangular Element (T3) ......................... 61
   3.12 Four-Node Quadrilateral Element (Q4) ................... 64
   3.13 Four-Node Tetrahedral Element (T4) ..................... 67
   3.14 Eight-Node Hexahedral Element (H8) ..................... 70
   3.15 Gauss Integration ...................................... 73
   3.16 Remarks ................................................ 80
   References .................................................. 81
4  Fundamental Theories for S-FEM .............................. 83
   4.1  General Procedure for S-FEM Models ..................... 84
   4.2  Domain Discretization with Polygonal Elements .......... 85
   4.3  Creating a Displacement Field: Shape Function
        Construction ........................................... 87
   4.4  Evaluation of the Compatible Strain Field .............. 91
   4.5  Modify/Construct the Strain Field ...................... 92
   4.6  Minimum Number of Smoothing Domains: Essential to
        Stability ............................................. 105
   4.7  Smoothed Galerkin Weak Form ........................... 108
   4.8  Discretized Linear Algebraic System of Equations ...... 1ll
   4.9  Solve the Algebraic System of Equations ............... 113
   4.10 Error Assessment in S-FEM and FEM Models .............. 113
   4.11 Implementation Procedure for S-FEM Models ............. 123
   4.12 General Properties of S-FEM Models .................... 124
   4.13 Remarks ............................................... 130
   References ................................................. 133
5  Cell-Based Smoothed FEM .................................... 137
   5.1  Cell-Based Smoothing Domain ........................... 138
   5.2  Discretized System of Equations ....................... 139
   5.3  Shape Function Evaluation ............................. 141
   5.4  Some Properties of CS-FEM ............................. 146
   5.5  Stability of CS-FEM and nCS-FEM ....................... 150
   5.6  Standard Patch Test: Accuracy ......................... 153
   5.7  Selective CS-FEM: Volumetric Locking Free ............. 156
   5.8  Numerical Examples .................................... 157
   5.9  Remarks ............................................... 177
   References ................................................. 179
6  Node-Based Smoothed FEM .................................... 183
   6.1  Introduction .......................................... 183
   6.2  Creation of Node-Based Smoothing Domains .............. 184
   6.3  Formulation of NS-FEM ................................. 185
   6.4  Evaluation of Shape Function Values ................... 187
   6.5  Properties of NS-FEM .................................. 190
   6.6  An Adaptive NS-FEM Using Triangular Elements .......... 197
   6.7  Numerical Examples .................................... 203
   6.8  Remarks ............................................... 238
   References ................................................. 240
7  Edge-Based Smoothed FEM .................................... 243
   7.1  Introduction .......................................... 243
   7.2  Creation of Edge-Based Smoothing Domains .............. 244
   7.3  Formulation of the ES-FEM ............................. 246
   7.4  Evaluation of the Shape Function Values in
        the ES-FEM ............................................ 251
   7.5  A Smoothing-Domain-Based Selective ES/NS-FEM .......... 254
   7.6  Properties of the ES-FEM .............................. 254
   7.7  Numerical Examples .................................... 258
   7.8  Remarks ............................................... 290
   References ................................................. 296
8  Face-Based Smoothed FEM .................................... 299
   8.1  Introduction .......................................... 299
   8.2  Face-Based Smoothing Domain Creation .................. 300
   8.3  Formulation of FS-FEM-T4 .............................. 301
   8.4  A Smoothing-Domain-Based Selective FS/NS-FEM-T4
        Model ................................................. 305
   8.5  Stability, Accuracy, and Mesh Sensitivity ............. 306
   8.6  Numerical Examples .................................... 308
   8.7  Remarks ............................................... 322
   References ................................................. 323
9  TheaFEM .................................................... 325
   9.1  Introduction .......................................... 325
   9.2  Idea of αFEM-T3 and αFEM-T4 ........................... 327
   9.3  αFEM-ТЗ and αFEM-T4 for Nonlinear Problems ............ 333
   9.4  Implementation and Patch Tests ........................ 335
   9.5  Numerical Examples .................................... 339
   9.6  Remarks ............................................... 363
   References ................................................. 365
10 S-FEM for Fracture Mechanics ............................... 367
   10.1 Introduction .......................................... 367
   10.2 Singular Stress Field Creation at the Crack-Tip ....... 368
   10.3 Possible sS-FEM Methods ............................... 375
   10.4 sNS-FEM Models ........................................ 376
   10.5 sES-FEM Models ........................................ 380
   10.6 Stiffness Matrix Evaluation ........................... 383
   10.7 J-Integral and SIF Evaluation ......................... 384
   10.8 Interaction Integral Method for Mixed Mode ............ 386
   10.9 Numerical Examples Solved Using sES-FEM-T3 ............ 394
   10.10 Numerical Examples Solved Using sNS-FEM-T3 ........... 417
   10.11 Remarks .............................................. 434
   References ................................................. 436
11 S-FEM for Viscoelastoplasticity ............................ 439
   11.1 Introduction .......................................... 439
   11.2 Strong Formulation for Viscoelastoplasticity .......... 440
   11.3 FEM for Viscoelastoplasticity: A Dual Formulation ..... 443
   11.4 S-FEM for Viscoelastoplasticity: A Dual Formulation ... 450
   11.5 A Posteriori Error Estimation ......................... 455
   11.6 Numerical Examples .................................... 458
   11.7 Concluding Remarks .................................... 494
   References ................................................. 495
12 ES-FEM for Plates .......................................... 497
   12.1 Introduction .......................................... 497
   12.2 Weak Form for the Reissner-Mindlin Plate .............. 498
   12.3 FEM Formulation for the Reissner-Mindlin Plate ........ 501
   12.4 ES-FEM-DSG3 for the Reissner-Mindlin Plate ............ 503
   12.5 Numerical Examples: Patch Test ........................ 509
   12.6 Numerical Examples: Static Analysis ................... 510
   12.7 Numerical Examples: Free Vibration of Plates .......... 517
   12.8 Numerical Examples: Buckling of Plates ................ 526
   12.9 Remarks ............................................... 536
   References ................................................. 536
13 S-FEM for Piezoelectric Structures ......................... 541
   13.1 Introduction .......................................... 541
   13.2 Galerkin Weak Form for Piezoelectrics ................. 542
   13.1 Finite Element Formulation for the Piezoelectric
        Problem ............................................... 543
   13.4 S-FEM for the Piezoelectric Problem ................... 546
   13.5 Numerical Results ..................................... 551
   13.6 Remarks ............................................... 565
   References ................................................. 565
14 S-FEM for Heat Transfer Problems ........................... 569
   14.1 Introduction .......................................... 569
   14.2 Strong-Form Equations for Heat Transfer Problems ...... 570
   14.3 Boundary Conditions ................................... 571
   14.4 Weak Forms for Heat Transfer Problems ................. 572
   14.5 FEM Equations ......................................... 577
   14.6 S-FEM Equations ....................................... 580
   14.7 Evaluation of the Smoothed Gradient Matrix ............ 583
   14.8 Numerical Example ..................................... 584
   14.9 Bioheat Transfer Problems ............................. 598
   14.10 Remarks .............................................. 604
   References ................................................. 604
15 S-FEM for Acoustics Problems ............................... 607
   15.1 Introduction .......................................... 607
   15.2 Mathematical Model of Acoustics Problems .............. 609
   15.3 Weak Forms for Acoustics Problems ..................... 611
   15.4 FEM Equations ......................................... 614
   15.5 S-FEM Equations ....................................... 617
   15.6 Error in a Numerical Model ............................ 619
   15.7 Numerical Examples .................................... 621
   15.8 Remarks ............................................... 642
   References ................................................. 643

Index ......................................................... 647


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:40 2019 Размер: 15,602 bytes.
Посещение N 1679 c 17.07.2012