Memoirs of the American Mathematical Society; vol.217, N 1019 (Providence, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаMeziani A. On first and second order planar elliptic equations with degeneracies. - Providence: American Mathematical Society, 2012. - v, 77 p. - (Memoirs of the American Mathematical Society; vol.217, N 1019). - Bibliogr.: p.77. - ISSN 0065-9266; ISBN 978-0-8218-5312-2
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Introduction .................................................... 1

Chapter 1  Preliminaries ........................................ 5

Chapter 2  Basic Solutions ...................................... 9
2.1  Properties of basic solutions .............................. 9
2.2  The spectral equation and Spec(fig.230) ........................ 11
2.3  Existence of basic solutions .............................. 13
2.4  Properties of the fundamental matrix of (Eσfig.24) ............. 14
2.5  The system of equations for the adjoint operator fig.23fig.24* ...... 16
2.6  Continuation of a simple spectral value ................... 17
2.7  Continuation of a double spectral value ................... 19
2.8  Purely imaginary spectral value ........................... 22
2.9  Main result about basic solutions ......................... 24

Chapter 3  Example ............................................. 27

Chapter 4  Asymptotic behavior of the basic solutions of fig.23 ..... 29
4.1  Estimate of σ ............................................. 30
4.2  First estimate of Φ and ψ ................................. 33
4.3  End of the proof of Theorem 4.1 ........................... 34

Chapter 5  The kernels ......................................... 37
5.1  Two lemmas ................................................ 38
5.2  Proof of Theorem 5.1 ...................................... 40
5.3  Modified kernels .......................................... 41

Chapter 6  The homogeneous equation fig.23u = 0 ..................... 43
6.1  Representation of solutions in a cylinder ................. 43
6.2  Cauchy integral formula ................................... 46
6.3  Consequences .............................................. 47

Chapter 7  The nonhomogeneous equation fig.23u = F .................. 51
7.1  Generalized Cauchy Integral Formula ....................... 51
7.2  The integral operator T ................................... 52
7.3  Compactness of the operator T ............................. 55

Chapter 8  The semilinear equation ............................. 57

Chapter 9  The second order equation: Reduction ................ 61

Chapter 10 The homogeneous equation Pu = 0 ..................... 63
10.1  Some properties .......................................... 63
10.2  Main result about the homogeneous equation Pu = 0 ........ 65
10.3  A maximum principle ...................................... 67

Chapter 11 The nonhomogeneous equation Pu = F .................. 69

Chapter 12 Normalization of a Class of Second Order Equations
           with a Singularity .................................. 73

Bibliography ................................................... 77


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:34 2019 Размер: 6,703 bytes.
Посещение N 1379 c 26.06.2012