Memoirs of the American Mathematical Society; vol.217, N 1020 (Providence, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаJoyce D. A theory of generalized Donaldson-Thomas invariants / D.Joyce, Y.Song. - Providence: American Mathematical Society, 2012. - v, 199 p. - (Memoirs of the American Mathematical Society; vol.217, N 1020). - Bibliogr.: p.187-191. - Ind.: p.197-199. - ISSN 0065-9266; ISBN 978-0-8218-5279-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Chapter 1  Introduction ......................................... 1
1.1  Brief sketch of background from [49, 50, 51, 52, 53, 54,
     55] ........................................................ 2
1.2  Behrend functions of schemes and stacks, from chapter 4 .... 4
1.3  Summary of the main results in chapter 5 ................... 5
1.4  Examples and applications in chapter 6 ..................... 7
1.5  Extension to quivers with superpotentials in chapter 7 ..... 8
1.6  Relation to the work of Kontsevich and Soibelman [63] ...... 9

Chapter 2  Constructible functions and stack functions ......... 13
2.1  Artin stacks and (locally) constructible functions ........ 13
2.2  Stack functions ........................................... 15
2.3  Operators Πμ and projections Πvin .......................... 17
2.4  Stack function spaces fig.25 .......................... 18

Chapter 3  Background material from [51, 52, 53, 54] ........... 21
3.1  Ringel-Hall algebras of an abelian category ............... 21
3.2  (Weak) stability conditions on fig.26 ......................... 23
3.3  Changing stability conditions and algebra identities ...... 25
3.4  Calabi-Yau 3-folds and Lie algebra morphisms .............. 27
3.5  Invariants Jα(τ) and transformation laws .................. 29

Chapter 4  Behrend functions and Donaldson-Thomas theory ....... 31
4.1  The definition of Behrend functions ....................... 31
4.2  Milnor fibres and vanishing cycles ........................ 33
4.3  Donaldson-Thomas invariants of Calabi-Yau 3-folds ......... 38
4.4  Behrend functions and almost closed 1-forms ............... 39
4.5  Characterizing Anum(coh(Χ)) for Calabi-Yau 3-folds ......... 40

Chapter 5  Statements of main results .......................... 45
5.1  Local description of the moduli of coherent sheaves ....... 47
5.2  Identities on Behrend functions of moduli stacks .......... 53
5.3  A Lie algebra morphism fig.27, and
     generalized Donaldson-Thomas invariants fig.28α(τ) ........... 54
5.4  Invariants РIα,n(τ') counting stable pairs, and
     deformation-invariance of the fig.28α(τ) ..................... 58

Chapter 6  Examples, applications, and generalizations ......... 63
6.1  Computing РIα,n(τ'), fig.28α(τ) and Jα(τ) in examples ......... 63
6.2  Integrality properties of the fig.28α(τ) ..................... 69
6.3  Counting dimension zero sheaves ........................... 71
6.4  Counting dimension one sheaves ............................ 73
6.5  Why it all has to be so complicated: an example ........... 77
6.6  μ-stability and invariants fig.28α(μ) ........................ 81
6.7  Extension to noncompact Calabi-Yau 3-folds ................ 82
6.8  Configuration operations and extended Donaldson-Thomas
     invariants ................................................ 86

Chapter 7  Donaldson-Thomas theory for quivers with 
           superpotentials ..................................... 89
7.1  Introduction to quivers ................................... 89
7.2  Quivers with superpotentials, and 3-Calabi-Yau 
     categories ................................................ 92
7.3  Behrend function identities, Lie algebra morphisms, and
     Donaldson-Thomas type invariants .......................... 96
7.4  Pair invariants for quivers ............................... 99
7.5  Computing fig.28dQ,I(μ), fig.29dQ,I(μ) in examples ................ 104
7.6  Integrality of fig.29dQ(μ) for generic (μfig.17, ≤) ............... 111

Chapter 8  The proof of Theorem 5.3 ........................... 119

Chapter 9  The proofs of Theorems 5.4 and 5.5 ................. 123
9.1  Holomorphic structures on a complex vector bundle ........ 124
9.2  Moduli spaces of analytic vector bundles on X ............ 127
9.3  Constructing a good local atlas S for fig.30 near [E] ........ 128
9.4  Moduli spaces of algebraic vector bundles on X ........... 130
9.5  Identifying versal families of holomorphic structures
     and algebraic vector bundles ............................. 131
9.6  Writing the moduli space as Crit(ƒ) ...................... 133
9.7  The proof of Theorem 5.4 ................................. 135
9.8  The proof of Theorem 5.5 ................................. 135
Chapter 10  The proof of Theorem 5.11 ......................... 139
10.1  Proof of equation (5.2) ................................. 139
10.2  Proof of equation (5.3) ................................. 142

Chapter 11  The proof of Theorem 5.14 ......................... 147

Chapter 12  The proofs of Theorems 5.22, 5.23 and 5.25 ........ 155
12.1  The moduli scheme of stable pairs fig.31α,nstp(τ') ........... 155
12.2  Pairs as objects of the derived category ................ 157
12.3  Cotangent complexes and obstruction theories ............ 158
12.4  Deformation theory for pairs ............................ 160
12.5  A non-perfect obstruction theory for fig.31α,nstp(τ')/U ...... 163
12.6  A perfect obstruction theory when rank α ≠ 1 ............ 167
12.7  An alternative construction for all rank α .............. 170
12.8  Deformation-invariance of the PIα,n(τ') ................. 173

Chapter 13  The proof of Theorem 5.27 ......................... 175
13.1  Auxiliary abelian categories fig.26p, fig.32p ..................... 175
13.2  Three weak stability conditions on fig.32p ................... 179
13.3  Stack function identities in SFα(fig.30fig.32p) .................. 181
13.4  A Lie algebra morphism fig.33 ......... 184
13.5  Proof of Theorem 5.27 ................................... 186

Bibliography .................................................. 187
Glossary of Notation .......................................... 193
Index ......................................................... 197



Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:34 2019 Размер: 10,805 bytes.
Посещение N 1236 c 26.06.2012