Memoirs of the American Mathematical Society; vol.215, N 1011 (Providence, 2012). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBroomhead N. Dimer models and Calabi-Yau algebras. - Providence: American Mathematical Society, 2012. - vii, 86 p.: ill. - (Memoirs of the American Mathematical Society; vol.215, N 1011). - Bibliogr.: p.85-86. - ISSN 0065-9266; ISBN 978-0-8218-5308-5
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Acknowledgements .............................................. vii

Chapter 1  Introduction ......................................... 1
1.1  Overview ................................................... 1
1.2  Structure of the article and main results .................. 2
1.3  Related results ............................................ 5

Chapter 2  Introduction to the dimer model ...................... 7
2.1  Quivers and algebras from dimer models ..................... 7
2.2  Symmetries ................................................ 13
2.3  Perfect matchings ......................................... 14

Chapter 3  Consistency ......................................... 19
3.1  A further condition on the R-symmetry ..................... 19
3.2  Rhombus tilings ........................................... 20
3.3  Zig-zag flows ............................................. 24
3.4  Constructing dimer models ................................. 28
3.5  Some consequences of geometric consistency ................ 31

Chapter 4  Zig-zag flows and perfect matchings ................. 35
4.1  Boundary flows ............................................ 35
4.2  Some properties of zig-zag flows .......................... 36
4.3  Right and left hand sides ................................. 38
4.4  Zig-zag fans .............................................. 39
4.5  Constructing some perfect matchings ....................... 43
4.6  The extremal perfect matchings ............................ 45
4.7  The external perfect matchings ............................ 48

Chapter 5  Toric algebras and algebraic consistency ............ 53
5.1  Toric algebras ............................................ 53
5.2  Some examples ............................................. 54
5.3  Some properties of toric algebras ......................... 56
5.4  Algebraic consistency for dimer models .................... 58
5.5  Example ................................................... 58

Chapter 6  Geometric consistency implies algebraic 
           consistency ......................................... 61
6.1  Flows which pass between two vertices ..................... 61
6.2  Proof of Proposition 6.2 .................................. 64
6.3  Proof of Theorem 6.1 ...................................... 71

Chapter 7  Calabi-Yau algebras from algebraically consistent
           dimers .............................................. 73
7.1  Calabi-Yau algebras ....................................... 73
7.2  The one sided complex ..................................... 75
7.3  Key lemma ................................................. 77
7.4  The main result ........................................... 78

Chapter 8  Non-commutative crepant resolutions ................. 81
8.1  Reflexivity ............................................... 81
8.2  Non-commutative crepant resolutions ....................... 83
Bibliography ................................................... 85


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:34 2019 Размер: 6,704 bytes.
Посещение N 1410 c 26.06.2012