Constanda C. Solution techniques for elementary partial differential equations (Boca Raton; London, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаConstanda C. Solution techniques for elementary partial differential equations. - 2nd ed. - Boca Raton: CRC; London: Taylor & Francis, 2010. - xviii, 325 p.: ill. - (Chapman & Hall/CRC mathematics; 22). - Bibliogr.: p.319-320. - Ind.: p.321-325. - ISBN 978-1-4398-1139-9
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Foreword ....................................................... xi
Preface to the Second Edition ................................ xiii
Preface to the First Edition ................................... xv

Chapter 1  Ordinary Differential Equations: Brief Review ........ 1
1.1  First-Order Equations ...................................... 1
1.2  Homogeneous Linear Equations with Constant Coefficients .... 3
1.3  Nonhomogeneous Linear Equations with Constant
     Coefficients ............................................... 5
1.4  Cauchy-Euler Equations ..................................... 6
1.5  Functions and Operators .................................... 7
     Exercises .................................................. 9

Chapter 2  Fourier Series ...................................... 11
2.1  The Full Fourier Series ................................... 11
2.2  Fourier Sine Series ....................................... 17
2.3  Fourier Cosine Series ..................................... 21
2.4  Convergence and Differentiation ........................... 23
     Exercises ................................................. 24

Chapter 3  Sturm—Liouville Problems ............................ 27
3.1  Regular Sturm-Liouville Problems .......................... 27
3.2  Other Problems ............................................ 39
3.3  Bessel Functions .......................................... 41
3.4  Legendre Polynomials ...................................... 47
3.5  Spherical Harmonics ....................................... 50
     Exercises ................................................. 54

Chapter 4  Some Fundamental Equations of Mathematical
           Physics ............................................. 59
4.1  The Heat Equation ......................................... 59
4.2  The Laplace Equation ...................................... 67
4.3  The Wave Equation ......................................... 73
4.4  Other Equations ........................................... 78
     Exercises ................................................. 81

Chapter 5  The Method of Separation of Variables ............... 83
5.1  The Heat Equation ......................................... 83
5.2  The Wave Equation ......................................... 95
5.3  The Laplace Equation ..................................... 101
5.4  Other Equations .......................................... 109
5.5  Equations with More than Two Variables ................... 113
     Exercises ................................................ 124

Chapter 6  Linear Nonhomogeneous Problems ..................... 131
6.1  Equilibrium Solutions .................................... 131
6.2  Nonhomogeneous Problems .................................. 136
     Exercises ................................................ 140

Chapter 7  The Method of Eigenfunction Expansion .............. 143
7.1  The Heat Equation ........................................ 143
7.2  The Wave Equation ........................................ 149
7.3  The Laplace Equation ..................................... 152
7.4  Other Equations .......................................... 155
     Exercises ................................................ 159

Chapter 8  The Fourier Transformations ........................ 165
8.1  The Full Fourier Transformation .......................... 165
8.2  The Fourier Sine and Cosine Transformations .............. 172
8.3  Other Applications ....................................... 179
     Exercises ................................................ 181

Chapter 9  The Laplace Transformation ......................... 187
9.1  Definition and Properties ................................ 187
9.2  Applications ............................................. 192
     Exercises ................................................ 202

Chapter 10 The Method of Green's Functions .................... 205
10.1 The Heat Equation ........................................ 205
10.2 The Laplace Equation ..................................... 213
10.3 The Wave Equation ........................................ 217
     Exercises ................................................ 223

Chapter 11 General Second-Order Linear Partial Differential
           Equations with Two Independent Variables ........... 227
11.1 The Canonical Form	....................................... 227
11.2 Hyperbolic Equations ..................................... 231
11.3 Parabolic Equations ...................................... 235
11.4 Elliptic Equations ....................................... 238
     Exercises ................................................ 239

Chapter 12 The Method of Characteristics ...................... 241
12.1 First-Order Linear Equations ............................. 241
12.2 First-Order Quasilinear Equations ........................ 248
12.3 The One-Dimensional Wave Equation ........................ 249
12.4 Other Hyperbolic Equations ............................... 256
     Exercises ................................................ 260

Chapter 13 Perturbation and Asymptotic Methods ................ 263
13.1 Asymptotic Series ........................................ 263
13.2 Regular Perturbation Problems ............................ 266
13.3 Singular Perturbation Problems ........................... 274
     Exercises ................................................ 280

Chapter 14 Complex Variable Methods ........................... 285
14.1 Elliptic Equations	....................................... 285
14.2 Systems of Equations ..................................... 291
     Exercises ................................................ 294

Answers to Odd-Numbered Exercises ............................. 297
Appendix ...................................................... 313
Bibliography .................................................. 319
Index ......................................................... 321


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:28 2019 Размер: 9,892 bytes.
Посещение N 1468 c 24.04.2012