Yin G. Hybrid switching diffusions: properties and applications (New York, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаYin G. Hybrid switching diffusions: properties and applications / G.G.Yin, Ch.Zhu. - New York: Springer, 2010. - xviii, 395 p.: ill. - (Stochastic modelling and applied probability; 63). - Ref.: p.379-391. - Ind.: p.393-395. - ISBN 978-1-4419-1104-9; ISSN 0172-4568
 

Оглавление / Contents
 
Preface ........................................................ xi
Conventions .................................................... xv
Glossary of Symbols .......................................... xvii

1  Introduction and Motivation .................................. 1
   1.1  Introduction ............................................ 1
   1.2  Motivation .............................................. 1
   1.3  What Is a Switching Diffusion ........................... 4
   1.4  Examples of Switching Diffusions ........................ 5
   1.5  Outline of the Book .................................... 21

Part I: Basic Properties, Recurrence, Ergodicity ............... 25

2  Switching Diffusion ......................................... 27
   2.1  Introduction ........................................... 27
   2.2  Switching Diffusions ................................... 27
   2.3  Regularity ............................................. 33
   2.4  Weak Continuity ........................................ 38
   2.5  Feller Property ........................................ 41
   2.6  Strong Feller Property ................................. 52
   2.7  Continuous and Smooth Dependence on the Initial 
        Data x ................................................. 56
   2.8  A Remark Regarding Nonhomogeneous Markov Processes ..... 65
   2.9  Notes .................................................. 67
3  Recurrence .................................................. 69
   3.1  Introduction ........................................... 69
   3.2  Formulation and Preliminaries .......................... 70
        3.2.1  Switching Diffusion ............................. 70
        3.2.2  Definitions of Recurrence and Positive
               Recurrence ...................................... 72
        3.2.3  Preparatory Results ............................. 72
   3.3  Recurrence and Transience .............................. 78
        3.3.1  Recurrence ...................................... 78
        3.3.2  Transience ...................................... 82
   3.4  Positive and Null Recurrence ........................... 85
        3.4.1  General Criteria for Positive Recurrence ........ 85
        3.4.2  Path Excursions ................................. 89
        3.4.3  Positive Recurrence under Linearization ......... 89
        3.4.4  Null Recurrence ................................. 93
   3.5  Examples ............................................... 94
   3.6  Proofs of Several Results ............................. 100
   3.7  Notes ................................................. 108
4  Ergodicity ................................................. 111
   4.1  Introduction .......................................... 1ll
   4.2  Ergodicity ............................................ 112
   4.3  Feedback Controls for Weak Stabilization .............. 119
   4.4  Ramifications ......................................... 125
   4.5  Asymptotic Distribution ............................... 129
   4.6  Notes ................................................. 133

Part II: Numerical Solutions and Approximation ................ 135

5  Numerical Approximation .................................... 137
   5.1  Introduction .......................................... 137
   5.2  Formulation ........................................... 138
   5.3  Numerical Algorithms .................................. 139
   5.4  Convergence of the Algorithm .......................... 140
        5.4.1  Moment Estimates ............................... 140
        5.4.2  Weak Convergence ............................... 144
   5.5  Examples .............................................. 151
   5.6  Discussions and Remarks ............................... 152
        5.6.1  Remarks on Rates of Convergence ................ 153
       5.6.2  Remarks on Decreasing Stepsize Algorithms ....... 155
   5.7  Notes ................................................. 156
5  Numerical Approximation to Invariant Measures .............. 159
   6.1  Introduction .......................................... 159
   6.2  Tightness of Approximation Sequences .................. 161
   6.3  Convergence to Invariant Measures ..................... 165
   6.4  Proof: Convergence of Algorithm ....................... 169
   6.5  Notes ................................................. 178

Part III: Stability ........................................... 181

7  Stability .................................................. 183
   7.1  Introduction .......................................... 183
   7.2  Formulation and Auxiliary Results ..................... 184
   7.3  p-Stability ........................................... 188
        7.3.1  Stability ...................................... 188
        7.3.2  Auxiliary Results .............................. 193
        7.3.3  Necessary and Sufficient Conditions for
               p-Stability .................................... 201
   7.4  Stability and Instability of Linearized Systems ....... 203
   7.5  Examples .............................................. 208
   7.6  Notes ................................................. 215
8  Stability of Switching ODEs ................................ 217
   8.1  Introduction .......................................... 217
   8.2  Formulation and Preliminary Results ................... 219
        8.2.1  Problem Setup .................................. 219
        8.2.2  Preliminary Results ............................ 220
   8.3  Stability and Instability: Sufficient Conditions ...... 227
   8.4  A Sharper Result ...................................... 231
   8.5  Remarks on Liapunov Exponent .......................... 236
        8.5.1  Stability under General Setup .................. 236
        8.5.2  Invariant Density .............................. 238
   8.6  Examples .............................................. 241
   8.7  Notes ................................................. 247
9  Invariance Principles ...................................... 251
   9.1  Introduction .......................................... 251
   9.2  Formulation ........................................... 251
   9.3  Invariance (I): A Sample Path Approach ................ 253
        9.3.1  Invariant Sets ................................. 254
        9.3.2  Linear Systems ................................. 263
   9.4  Invariance (II): A Measure-Theoretic Approach ......... 265
        9.4.1  ω-Limit Sets and Invariant Sets ................ 269
        9.4.2  Switching Diffusions ........................... 275
   9.5  Notes ................................................. 280

Part IV: Two-time-scale Modeling and Applications ............. 283

10 Positive Recurrence: Weakly Connected Ergodic Classes ...... 285
   10.1 Introduction .......................................... 285
   10.2 Problem Setup and Notation ............................ 285
   10.3 Weakly Connected, Multiergodic-Class Switching
        Processes ............................................. 286
        10.3.1 Preliminary .................................... 287
        10.3.2 Weakly Connected, Multiple Ergodic Classes ..... 288
        10.3.3 Inclusion of Transient Discrete Events ......... 297
   10.4 Notes ................................................. 300
11 Stochastic Volatility Using Regime-Switching Diffusions .... 301
   11.1 Introduction .......................................... 301
   11.2 Formulation ........................................... 303
   11.3 Asymptotic Expansions ................................. 306
        11.3.1 Construction of fig.30(S,t,i) and ψ0(S,τ,i) ........ 308
        11.3.2 Construction of fig.31(S,t,i) and ψ1(5,τ,i) ........ 309
        11.3.3 Construction of fig.3k(S,t) and ψ1(S,τ) ............ 313
   11.4 Asymptotic Error Bounds ............................... 317
   11.5 Notes ................................................. 321
12 Two-Time-Scale Switching Jump Diffusions ................... 323
   12.1 Introduction .......................................... 323
   12.2 Fast-Varying Switching ................................ 326
        12.2.1 Fast-Varying Markov Chain Model ................ 326
        12.2.2 Limit System ................................... 329
   12.3 Fast-Varying Diffusion ................................ 339
   12.4 Discussion and Remarks ................................ 348
   12.5 Remarks on Numerical Solutions for Switching Jump
        Diffusions ............................................ 349
   12.6 Notes ................................................. 352

A  Appendix ................................................... 355
   A.l  Discrete-Time Markov Chains ........................... 355
   A.2  Continuous-Time Markov Chains ......................... 358
   A.3  Fredholm Alternative and Ramification ................. 362
   A.4  Martingales, Gaussian Processes, and Diffusions ....... 366
        A.4.1  Martingales .................................... 366
        A.4.2  Gaussian Processes and Diffusion Processes ..... 369
   A.5  Weak Convergence ...................................... 371
   A.6  Hybrid Jump Diffusion ................................. 376
   A.7  Miscellany ............................................ 377
   A.8  Notes ................................................. 378
   References ................................................. 379

Index ......................................................... 392


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:26 2019 Размер: 13,689 bytes.
Посещение N 1503 c 17.04.2012