Rotman J.J. Advanced modern algebra (Providence, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRotman J.J. Advanced modern algebra. - 2nd ed. - Providence: American Mathematical Society, 2010. - xvi, 1008 p.: ill. - (Graduate studies in mathematics; vol.114). - Bibliogr.: p.985-989. - Ind.: p.991-1008. - ISBN 978-0-8218-4741-1
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface to Second Edition ...................................... ix
Special Notation ............................................. xiii

Chapter 1  Groups I ............................................. 1
1.1  Classical Formulas ......................................... 1
1.2  Permutations ............................................... 5
1.3  Groups .................................................... 16
1.4  Lagrange's Theorem ........................................ 28
1.5  Homomorphisms ............................................. 38
1.6  Quotient Groups ........................................... 47
1.7  Group Actions ............................................. 60
1.8  Counting .................................................. 76

Chapter 2  Commutative Rings I ................................. 81
2.1  First Properties .......................................... 81
2.2  Polynomials ............................................... 91
2.3  Homomorphisms ............................................. 96
2.4  From Arithmetic to Polynomials ........................... 102
2.5  Irreducibility ........................................... 115
2.6  Euclidean Rings and Principal Ideal Domains .............. 123
2.7  Vector Spaces ............................................ 133
2.8  Linear Transformations and Matrices ...................... 145
2.9  Quotient Rings and Finite Fields ......................... 156

Chapter 3  Galois Theory ...................................... 173
3.1  Insolvability of the Quintic ............................. 173
     3.1.1  Classical Formulas and Solvability by Radicals .... 181
     3.1.2  Translation into Group Theory ..................... 184
3.2  Fundamental Theorem of Galois Theory ..................... 192
3.3  Calculations of Galois Groups ............................ 212

Chapter 4  Groups II .......................................... 223
4.1  Finite Abelian Groups .................................... 223
     4.1.1  Direct Sums ....................................... 223
     4.1.2  Basis Theorem ..................................... 230
     4.1.3  Fundamental Theorem ............................... 236
4.2  Sylow Theorems ........................................... 243
4.3  Solvable Groups .......................................... 252
4.4  Projective Unimodular Groups ............................. 263
4.5  Free Groups and Presentations ............................ 270
4.6  Nielsen-Schreier Theorem ................................. 285

Chapter 5  Commutative Rings II ............................... 295
5.1  Prime Ideals and Maximal Ideals .......................... 295
5.2  Unique Factorization Domains ............................. 302
5.3  Noetherian Rings ......................................... 312
5.4  Zorn's Lemma and Applications ............................ 316
     5.4.1  Zorn's Lemma ...................................... 317
     5.4.2  Vector Spaces ..................................... 321
     5.4.3  Algebraic Closure ................................. 325
     5.4.4  Luroth's Theorem .................................. 331
     5.4.5  Transcendence ..................................... 335
     5.4.6  Separability ...................................... 342
5.5  Varieties ................................................ 348
     5.5.1  Varieties and Ideals .............................. 349
     5.5.2  Nullstellensatz ................................... 354
     5.5.3  Irreducible Varieties ............................. 358
     5.5.4  Primary Decomposition ............................. 361
5.6  Algorithms in k[x1,..., xn] .............................. 369
     5.6.1  Monomial Orders ................................... 370
     5.6.2  Division Algorithm ................................ 376
5.7  Grobner Bases ............................................ 379
     5.7.1  Buchberger's Algorithm ............................ 381

Chapter 6  Rings .............................................. 391
6.1  Modules .................................................. 391
6.2  Categories ............................................... 418
6.3  Functors ................................................. 437
6.4  Free and Projective Modules .............................. 450
6.5  Injective Modules ........................................ 460
6.6  Tensor Products .......................................... 469
6.7  Adjoint Isomorphisms ..................................... 488
6.8  Flat Modules ............................................. 493
6.9  Limits ................................................... 498
6.10 Adjoint Functors ......................................... 514
6.11 Galois Theory for Infinite Extensions .................... 518

Chapter 7  Representation Theory .............................. 525
7.1  Chain Conditions ......................................... 525
7.2  Jacobson Radical ......................................... 534
7.3  Semisimple Rings ......................................... 539
7.4  Wedderburn-Artin Theorems ................................ 550
7.5  Characters ............................................... 563
7.6  Theorems of Burnside and of Frobenius .................... 590
7.7  Division Algebras ........................................ 600
7.8  Abelian Categories ....................................... 614
7.9  Module Categories ........................................ 626

Chapter 8  Advanced Linear Algebra ............................ 635
8.1  Modules over PIDs ........................................ 635
     8.1.1  Divisible Groups .................................. 646
8.2  Rational Canonical Forms ................................. 655
8.3  Jordan Canonical Forms ................................... 664
8.4  Smith Normal Forms ....................................... 671
8.5  Bilinear Forms ........................................... 682
     8.5.1  Inner Product Spaces .............................. 682
     8.5.2  Isometries ........................................ 694
8.6  Graded Algebras .......................................... 704
     8.6.1  Tensor Algebra .................................... 706
     8.6.2  Exterior Algebra .................................. 715
8.7  Determinants ............................................. 729
8.8  Lie Algebras ............................................. 743

Chapter 9  Homology ........................................... 751
9.1  Simplicial Homology ...................................... 751
9.2  Semidirect Products ...................................... 757
9.3  General Extensions and Cohomology ........................ 765
     9.3.1  H2(Q,K) and Extensions ............................ 766
     9.3.2  H1(Q,K) and Conjugacy ............................. 774
9.4  Homology Functors ........................................ 782
9.5  Derived Functors ......................................... 796
     9.5.1  Left Derived Functors ............................. 797
     9.5.2  Right Derived Covariant Functors .................. 808
     9.5.3  Right Derived Contravariant Functors .............. 811
9.6  Ext ...................................................... 815
9.7  Tor ...................................................... 825
9.8  Cohomology of Groups ..................................... 831
9.9  Crossed Products ......................................... 848
9.10 Introduction to Spectral Sequences ....................... 854
9.11 Grothendieck Groups ...................................... 858
     9.11.1 The Functor K0 .................................... 858
     9.11.2 The Functor G0 .................................... 862

Chapter 10 Commutative Rings III .............................. 873
10.1 Local and Global ......................................... 873
     10.1.1 Subgroups of fig.1 .................................... 873
10.2 Localization ............................................. 881
10.3 Dedekind Rings ........................................... 899
     10.3.1 Integrality ....................................... 900
     10.3.2 Nullstellensatz Redux ............................. 908
     10.3.3 Algebraic Integers ................................ 915
     10.3.4 Characterizations of Dedekind Rings ............... 927
     10.3.5 Finitely Generated Modules over Dedekind Rings .... 937
10.4 Homological Dimensions ................................... 945
10.5 Hilbert's Theorem on Syzygies ............................ 956
10.6 Commutative Noetherian Rings ............................. 961
10.7 Regular Local Rings ...................................... 969
Bibliography .................................................. 985

Index ......................................................... 991


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:26 2019 Размер: 12,730 bytes.
Посещение N 1529 c 17.04.2012