Oldham K.B. An atlas of functions: with Equator, the atlas function calculator (New York, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаOldham K.B. An atlas of functions: with Equator, the atlas function calculator / K.Oldham, J.Myland, J.Spanier. - 2nd ed. - New York: Springer, 2009. - xi, 748 p.: col. ill. + 1 SD-ROM. - Bibliogr.: p.703-704. - ISBN 978-0-387-48806-6
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
0  GENERAL CONSIDERATIONS ....................................... 1
   What functions are. Organization of the Atlas. Notational
   conventions. Rules of the calculus.

1  THE CONSTANT FUNCTION с ..................................... 13
   J. Mathematical constants. Complex numbers. Pulse
   functions. Series of powers of natural numbers.

2  THE FACTORIAL FUNCTION n! ................................... 21
   Double and triple factorial functions. Combinatorics.
   Stirling numbers of the second kind.

3  THE ZETA NUMBERS AND RELATED FUNCTIONS ...................... 29
   Special values. Apéry's constant. The Debye functions
   of classical physics.

4  THE BERNOULLI NUMBERS Bn .................................... 39
   Dual definitions. Relationship to zeta numbers. The Euler-
   Maclaurin sum formulas.

5  THE EULER NUMBERS En ........................................ 45
   Relationship to beta numbers and Bernoulli numbers.

6  THE BINOMIAL COEFFICIENTS (νm) ............................... 49
   Binomial expansion. Pascal's triangle. The Laplace-de
   Moivre formula. Multinomial coefficients.

7  THE LINEAR FUNCTION bx+c AND ITS RECIPROCAL ................. 57
   How to fit data to a "best straight line". Errors
   attaching to the fitted parameters.

8  MODIFYING FUNCTIONS ......................................... 67
   Selecting features of numbers. Rounding. Base conversion.

9  THE HEAVISIDE u(x-a) AND DIRAC δ(x-a) FUNCTIONS ............. 75
   Window and other discontinuous functions. The comb
   function. Green's functions.

10 THE INTEGER POWERS xn AND (bx+с)n ............................ 81
   Summing power series. Euler transformation.
   Transformations through lozenge diagrams.

11 THE SQUARE-ROOT FUNCTION √bx + c AND ITS RECIPROCAL ......... 95
   Behavior of the semiparabolic function in the complex
   plane. The parabola and its geometry.

12 THE NONINTEGER POWER xν .................................... 103
   Behavior in four quadrants. Mellin transforms. De
   Moivre's theorem. The fractional calculus.

13 THE SEMIELLIPTIC FUNCTION (b/d)√α2-x2 AND ITS
   RECIPROCAL ................................................. 113
   Ellipticity. Geometric properties of the ellipse,
   ellipsoid, and semicircle. Superellipses.

14 THE (b/d)√x2±α2 FUNCTIONS AND THEIR RECIPROCALS ............ 121
   Vertical, horizontal and diagonal varieties of
   hyperbolas. Operations that interrelate functions
   graphically.

15 THE QUADRATIC FUNCTION ax2+bx+c AND ITS RECIPROCAL ......... 131
   Zeros, real and complex. The root-quadratic function.
   Conic sections. Trajectory of a projectile.

16 THE CUBIC FUNCTION x3+ax2+bx+c ............................. 139
   Zeros of cubics and quarries. "Joining the dots" with
   sliding cubics and cubic splines.

17 POLYNOMIAL FUNCTIONS ....................................... 147
   Finding zeros. Rational functions. Partial fractions.
   Polynomial optimization and regression.

18 THE POCHHAMMER POLYNOMIALS (x)n ............................ 159
   Stirling numbers of the first kind. Hypergeometric
   functions.

19 THE BERNOULLI POLYNOMIALS Bn(x) ............................ 175
   Sums of monotonic power series.

20 THE EULER POLYNOMIALS En(x) ................................ 181
   Sums of alternating power series.

21 THE LEGENDRE POLYNOMIALS Pn(x) ............................. 187
   Orthogonality. The Legendre differential equation and its
   other solution, the Qn(x) function.

22 THE CHEBYSHEV POLYNOMIALS Tn(x) AND Un(x) .................. 197
   Gegenbauer and Jacobi polynomials. Fitting data sets with
   discrete Chebyshev polynomials.

23 THE LAGUERRE POLYNOMIALS Ln(x) ............................. 209
   Associated Laguerre polynomials. Fibonacci numbers and
   the golden section.

24 THE HERMITE POLYNOMIALS Hn(x) .............................. 217
   Gauss integration. The systematic solution of second-
   order differential equations.

25 THE LOGARITHMIC FUNCTION ln(x) ............................. 229
   Logarithms to various bases. The dilogarithm and
   polylogarithms. Logarithmic integral.

26 THE EXPONENTIAL FUNCTION exp(±x) ........................... 241
   Exponential growth/decay. Self-exponential function.
   Exponential polynomial. Laplace transforms.

27 EXPONENTIAL OF POWERS exp(±xν) ............................. 255
   Exponential theta functions. Various distributions; their
   probability and cumulative versions.

28 THE HYPERBOLIC COSINE cosh(x) AND SINE sinh(x) FUNCTIONS ... 269
   О Algebraic and geometric interpretations. The catenary.

29 THE HYPERBOLIC SECANT AND COSECANT FUNCTIONS ............... 281
   Is Interrelations between hyperbolic functions via
   similar triangles. Interesting inverse Laplace
   transformations.

30 THE HYPERBOLIC TANGENT AND COTANGENT FUNCTIONS ............. 289
   The Langevin function, important in the theory of
   electrical or magnetic dipoles.

31 THE INVERSE HYPERBOLIC FUNCTIONS ........................... 297
   Synthesis from reciprocal linear functions. Logarithmic
   equivalence. Expansion as hypergeometric functions.

32 THE COSINE cos(x) AND SINE sin(x) FUNCTIONS ................ 309
   Sinusoids. Periodicity, frequency, phase and amplitude.
   Fourier transforms. Clausen's integral.

33 THE SECANT sec(x) AND COSECANT csc(x) FUNCTIONS ............ 329
   Interrelationships between circular functions via similar
   triangles. The Gudermannian function and its inverse.

34 THE TANGENT tan(x) AND COTANGENT cot(x) FUNCTIONS .......... 339
   Tangent and cotangent roots. Utility of half-argument
   formulas. Rules of trigonometry.

35 THE INVERSE CIRCULAR FUNCTIONS ............................. 351
   Synthesis from reciprocal linear functions. Two-
   dimensional coordinate systems and scale factors.

36 PERIODIC FUNCTIONS ......................................... 367
   Expansions in sines and cosines. Euler's formula and
   Parseval's relationship. Waveforms.

37 THE EXPONENTIAL INTEGRALS Ei(x) AND Ein(x) ................. 375
   Cauchy limits. Functions defined as indefinite integrals.
   Table of popular integrals.

38 SINE AND COSINE INTEGRALS .................................. 385
   Entire cosine versions. Auxiliary sine and cosine
   integrals.

39 THE FRESNEL INTEGRALS C(x) AND S(x) ........................ 395
   Bohmer integrals. Auxiliary Fresnel integrals. Curvatures
   and lengths of plane curves. Cornu's spiral.

40 THE ERROR FUNCTION erf(x) AND ITS COMPLEMENT erfc(x) ....... 405
   Inverse error function. Repeated integrals. Normal
   probability. Random numbers. Monte Carlo.

41 THE exp(x)erfc(√x) AND RELATED FUNCTIONS .................. 417
   Properties in the complex plane and the Voigt function.

42 DAWSON'S INTEGRAL daw(x) ................................... 427
   The closely related erfi function. Intermediacy to
   exponentials. Gaussian integrals of complex argument.

43 THE GAMMA FUNCTION Г(ν) .................................... 435
   Gauss-Legendre formula. Complete beta function. Function
   synthesis and basis hypergeometric functions.

44 THE DIGAMMA FUNCTION Ψ(ν) .................................. 449
   Polygamma functions. Bateman's G function and its
   derivatives. Sums of reciprocal linear functions.

45 THE INCOMPLETE GAMMA FUNCTIONS ............................. 461
   The Mittag-Leffler, or generalized exponential, function.

46 THE PARABOLIC CYLINDER FUNCTION Dν(x) ...................... 471
   Three-dimensional coordinate systems. The Laplacian,
   separability, and an exemplary application.

47 THE KUMMER FUNCTION M(α,c,x) ............................... 485
   The confluent hypergeometric differential equation.
   Kummer's transformation. Zeros.

48 THE TRICOMI FUNCTION U(α,c,x) .............................. 497
   О Numbers of zeros and extrema. The two Whittaker
   functions. Bateman's confluent function.

49 THE MODIFIED BESSEL FUNCTIONS In(x) OF INTEGER ORDER ....... 507
   Bessel's modified differential equation. Cylinder
   functions generally and their classification.

51 THE MODIFIED BESSEL FUNCTION Iν(x) OF ARBITRARY ORDER ...... 519
   Simplifications when the order is a multiple of 1/2, 1/3,
   or 1/4 Auxiliary cylinder functions.

51 THE MACDONALD FUNCTION Kν(x) ............................... 527
   Alternative solutions to Bessel's modified differential
   equation. Spherical Macdonald functions.

52 THE BESSEL FUNCTIONS Jn(x) OF INTEGER ORDER ................ 537
   Am Zeros, extrema, and their associated values. Miller's
   method. The Newton-Raphson root-finding method.

53 THE BESSEL FUNCTION Jν(x) OF ARBITRARY ORDER ............... 553
   The Bessel-Clifford equation. Hankel transforms. Neumann
   series. Discontinuous Bessel integrals.

54 THE NEUMANN FUNCTION Yν(x) ................................. 567
   Behavior close to zero argument. Hankel functions.
   Asymptotic expansions of cylinder functions.

55 THE KELVIN FUNCTIONS ....................................... 577
   Complex-plane relationships to Bessel functions.

56 THE AIRY FUNCTIONS Ai(x) AND Bi(x) ......................... 585
   Hyperbolic/circular chimera. Airy's differential
   equation. Auxiliary Airy functions. Airy derivatives.

57 THE STRUVE FUNCTION hν(x) .................................. 593
   Kinship with Neumann functions. The modified Struve
   function.

58 THE INCOMPLETE BETA FUNCTION B(ν,μ,x) ...................... 603
   Role as a hypergeometric function. Integrals of circular
   and hyperbolic functions raised to an arbitrary power.

59 THE LEGENDRE FUNCTIONS Pν(x) AND Qν(x) ...................... 611
   The associated Legendre functions. Solving the Laplace
   equation in spherical coordinates.

60 THE GAUSS HYPERGEOMETRIC FUNCTION F(α,b,c,x) ............... 627
   Plethora of special cases. Contiguity relationships.
   Linear transformations.

61 THE COMPLETE ELLIPTIC INTEGRALS K(k) AND E(k) .............. 637
   The third kind of complete elliptic integral. Means.
   The elliptic nome. Theta functions of various kinds.

62 THE INCOMPLETE ELLIPTIC INTEGRALS F(k,φ) AND Е(k,φ) ........ 653
   The Landen transformations. II(ν,k,φ). Integrals of
   reciprocal cubic functions. Romberg integration.

63 THE JACOBIAN ELLIPTIC FUNCTIONS ............................ 671
   Trigonometric interpretation. Circular/hyperbolic
   intermediacy. Double periodicity in the complex plane.

64 THE HURWITZ FUNCTION ζ(ν,u) ................................ 685
   Bivariate eta functiota. The Lerch function. Weyl
   differintegration and its application to periodic
   functions.

APPENDIX A: USEFUL DATA ....................................... 697
   SI units and prefixes. Universal constants. Terrestrial
   constants and standards. The Greek alphabet.

APPENDIX В: BIBLIOGRAPHY ...................................... 703
   Cited sources and supporting publications. Books and web
   sources but not original research articles.

APPENDIX C: EQUATOR, THE ATLAS FUNCTION CALCULATOR ............ 705
   Disk installation. Basic operations and additional
   features. Input/output formats. Accuracy. Keywords.

SYMBOL INDEX .................................................. 723
   Notation used here and elsewhere.

SUBJECT INDEX ................................................. 735
   A comprehensive directory to the topics in this Atlas.


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:26 2019 Размер: 15,968 bytes.
Посещение N 1758 c 17.04.2012