Giblin P.J. Graphs, surfaces and homology (Cambridge; New York, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаGiblin P.J. Graphs, surfaces and homology. - 3rd ed. - Cambridge; New York: Cambridge University Press, 2010. - xx, 251 p.: ill. - Ref.: p.239-242. - Ind.: p.243-251. - ISBN 978-0-521-76665-4; ISBN 978-0-521-15405-5
 

Место хранения: 01 | ГПНТБ СО РАН | Новосибирск

Оглавление / Contents
 
   Preface to the third edition ................................ xi
   Preface to the first edition .............................. xiii
   List of notation .......................................... xvii

Introduction .................................................... 1

1  Graphs ....................................................... 9
   Abstract graphs and realizations ............................. 9
    • Kirchhoff's laws ......................................... 14
   Maximal trees and the cyclomatic number ..................... 16
   Chains and cycles on an oriented graph ...................... 20
    • Planar graphs ............................................ 26
    • Appendix on Kirchhoff's equations ........................ 35
2  Closed surfaces ............................................. 38
   Closed surfaces and orientability ........................... 39
   Polygonal representation of a closed surface ................ 45
    • A note on realizations ................................... 47
   Transformation of closed surfaces to standard form .......... 49
   Euler characteristics ....................................... 55
    • Minimal triangulations ................................... 60
3  Simplicial complexes ........................................ 67
   Simplexes ................................................... 67
   Ordered simplexes and oriented simplexes .................... 73
   Simplicial complexes ........................................ 74
   Abstract simplicial complexes and realizations .............. 77
   Triangulations and diagrams of simplicial complexes ......... 79
   Stars, joins and links ...................................... 84
   Collapsing .................................................. 88
    • Appendix on orientation .................................. 93
4  Homology groups ............................................. 99
   Chain groups and boundary homomorphisms ..................... 99
   Homology groups ............................................ 104
   Relative homology groups ................................... 112
   Three homomorphisms ........................................ 121
    • Appendix on chain complexes ............................. 124
5  The question of invariance ................................. 127
   Invariance under stellar subdivision ....................... 128
    • Triangulations, simplicial approximation and topological
      invariance .............................................. 133
    • Appendix on barycentric subdivision ..................... 136
6  Some general theorems ...................................... 138
   The homology sequence of a pair ............................ 138
   The excision theorem ....................................... 142
   Collapsing revisited ....................................... 144
   Homology groups of closed surfaces ......................... 149
   The Euler characteristic ................................... 154
7  Two more general theorems .................................. 158
   The Mayer-Vietoris sequence ................................ 158
    • Homology sequence of a triple ........................... 167
8  Homology modulo 2 .......................................... 171
9  Graphs in surfaces ......................................... 180
   Regular neighbourhoods ..................................... 183
   Surfaces ................................................... 187
   Lefschetz duality .......................................... 191
    • A three-dimensional situation ........................... 195
   Separating surfaces by graphs .............................. 198
   Representation of homology elements by simple closed
   polygons ................................................... 200
   Orientation preserving and reversing loops ................. 203
   A generalization of Euler's formula ........................ 207
    • Brussels Sprouts ........................................ 211

   Appendix: abelian groups ................................... 215
   Basic definitions .......................................... 215
   Finitely generated (f.g.) and free abelian groups .......... 217
   Quotient groups ............................................ 219
   Exact sequences ............................................ 221
   Direct sums and splitting .................................. 222
   Presentations .............................................. 226
   Rank of a f.g. abelian group ............................... 233

References .................................................... 239
Index ......................................................... 243


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:24 2019 Размер: 8,519 bytes.
Посещение N 1643 c 17.04.2012