Fujikoshi Y. Multivariate statistics: high-dimensional and large-sample approximations (Hoboken, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаFujikoshi Y. Multivariate statistics: high-dimensional and large-sample approximations / Y.Fujikoshi, V.V.Ulyanov, R.Shimizu. - Hoboken: Wiley, 2010. - xviii, 533 p.: ill. - (Wiley series in probability and statistics). - Bibliogr: p.513-526. - Ind.: p.527-533. - ISBN 978-0-470-41169-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
   Preface ................................................... xiii
   Glossary of Notation and Abbreviations .................... xvii

1  Multivariate Normal and Related Distributions ................ 1
   1.1  Random Vectors .......................................... 1
        1.1.1  Mean Vector and Covariance Matrix ................ 1
        1.1.2  Characteristic Function and Distribution ......... 5
   1.2  Multivariate Normal Distribution ........................ 6
        1.2.1  Bivariate Normal Distribution .................... 6
        1.2.2  Definition ....................................... 8
        1.2.3  Some Properties ................................. 10
   1.3  Spherical and Elliptical Distributions ................. 15
   1.4  Multivariate Cumulants ................................. 19
   Problems .................................................... 24
2  Wishart Distribution ........................................ 29
   2.1  Definition ............................................. 29
   2.2  Some Basic Properties .................................. 32
   2.3  Functions of Wishart Matrices .......................... 36
   2.4  Cochran's Theorem ...................................... 39
   2.5  Asymptotic Distributions ............................... 40
   Problems .................................................... 43
3  Hotelling's T2 and Lambda Statistics ........................ 47
   3.1  Hotelling's T2 and Lambda Statistics ................... 47
        3.1.1  Distribution of the T2 Statistic ................ 47
        3.1.2  Decomposition of T2 and D2 ...................... 49
   3.2  Lambda Statistic ....................................... 53
        3.2.1  Motivation of the Lambda Statistic .............. 53
        3.2.2  Distribution of the Lambda Statistic ............ 55
   3.3  Test for Additional Information ........................ 58
        3.3.1  Decomposition of the Lambda Statistic ........... 61
   Problems .................................................... 64
4  Correlation Coefficients .................................... 69
   4.1  Ordinary Correlation Coefficients ...................... 69
        4.1.1  Population Correlation .......................... 69
        4.1.2  Sample Correlation .............................. 71
   4.2  Multiple Correlation Coefficient ....................... 75
        4.2.1  Population Multiple Correlation ................. 75
        4.2.2  Sample Multiple Correlation ..................... 77
   4.3  Partial Correlation .................................... 80
        4.3.1  Population Partial Correlation .................. 80
        4.3.2  Sample Partial Correlation ...................... 82
        4.3.3  Covariance Selection Model ...................... 83
   Problems .................................................... 87
5  Asymptotic Expansions for Multivariate Basic Statistics ..... 91
   5.1  Edgeworth Expansion and its Validity ................... 91
   5.2  Sample Mean Vector and Covariance Matrix ............... 98
   5.3  T2 Statistic .......................................... 104
        5.3.1  Outlines of Two Methods ........................ 104
        5.3.2  Multivariate t-Statistic ....................... 107
        5.3.3  Asymptotic Expansions .......................... 109
   5.4  Statistics with a Class of Moments .................... 1ll
        5.4.1  Large-Sample Expansions ........................ 1ll
        5.4.2  High-Dimensional Expansions .................... 117
   5.5  Perturbation Method ................................... 120
   5.6  Cornish-Fisher Expansions ............................. 125
        5.6.1  Expansion Formulas ............................. 125
        5.6.2  Validity of Cornish-Fisher Expansions .......... 129
   5.7  Transformations for Improved Approximations ........... 132
   5.8  Bootstrap Approximations .............................. 135
   5.9  High-Dimensional Approximations ....................... 138
        5.9.1  Limiting Spectral Distribution ................. 138
        5.9.2  Central Limit Theorem .......................... 140
        5.9.3  Martingale Limit Theorem ....................... 143
        5.9.4  Geometric Representation ....................... 144
   Problems ................................................... 145
6  MANOVA Models .............................................. 149
   6.1  Multivariate One-Way Analysis of Variance ............. 149
   6.2  Multivariate Two-Way Analysis of Variance ............. 152
   6.3  MANOVA Tests .......................................... 157
        6.3.1  Test Criteria .................................. 157
        6.3.2  Large-Sample Approximations .................... 158
        6.3.3  Comparison of Powers ........................... 159
        6.3.4  High-Dimensional Approximations ................ 161
   6.4  Approximations Under Nonnormality ..................... 163
        6.4.1  Asymptotic Expansions .......................... 163
        6.4.2  Bootstrap Tests ................................ 167
   6.5  Distributions of Characteristic Roots ................. 170
        6.5.1  Exact Distributions ............................ 170
        6.5.2  Large-Sample Case .............................. 172
        6.5.3  High-Dimensional Case .......................... 174
   6.6  Tests for Dimensionality .............................. 176
        6.6.1  Three Test Criteria ............................ 176
        6.6.2  Large-Sample and High-Dimensional
               Asymptotics .................................... 178
   6.7  High-Dimensional Tests ................................ 181
   Problems ................................................... 183
7  Multivariate Regression .................................... 187
   7.1  Multivariate Linear Regression Model .................. 187
   7.2  Statistical Inference ................................. 189
   7.3  Selection of Variables ................................ 194
        7.3.1  Stepwise Procedure ............................. 194
        7.3.2  Cp Criterion ................................... 196
        7.3.3  AIC Criterion .................................. 200
        7.3.4  Numerical Example .............................. 202
   7.4  Principal Component Regression ........................ 203
   7.5  Selection of Response Variables ....................... 206
   7.6  General Linear Hypotheses and Confidence Intervals .... 209
   7.7  Penalized Regression Models ........................... 213
   Problems ................................................... 213
8  Classical and High-Dimensional Tests for Covariance
   Matrices ................................................... 219
   8.1  Specified Covariance Matrix ........................... 219
        8.1.1  Likelihood Ratio Test and Moments .............. 219
        8.1.2  Asymptotic Expansions .......................... 221
        8.1.3  High-Dimensional Tests ......................... 225
   8.2  Sphericity ............................................ 227
        8.2.1  Likelihood Ratio Tests and Moments ............. 227
        8.2.2  Asymptotic Expansions .......................... 228
        8.2.3  High-Dimensional Tests ......................... 230
   8.3  Intraclass Covariance Structure ....................... 231
        8.3.1  Likelihood Ratio Tests and Moments ............. 231
        8.3.2  Asymptotic Expansions .......................... 233
        8.3.3  Numerical Accuracy ............................. 235
   8.4  Test for Independence ................................. 236
        8.4.1  Likelihood Ratio Tests and Moments ............. 236
        8.4.2  Asymptotic Expansions .......................... 238
        8.4.3  High-Dimensional Tests ......................... 239
   8.5  Tests for Equality of Covariance Matrices ............. 241
        8.5.1  Likelihood Ratio Test and Moments .............. 241
        8.5.2  Asymptotic Expansions .......................... 243
        8.5.3  High-Dimensional Tests ......................... 244
   Problems ................................................... 245
9  Discriminant Analysis ...................................... 249
   9.1  Classification Rules for Known Distributions .......... 249
   9.2  Sample Classification Rules for Normal Populations .... 256
        9.2.1  Two Normal Populations with Σ1 = Σ2 ............ 256
        9.2.2  Case of Several Normal Populations ............. 258
   9.3  Probability of Misclassifications ..................... 258
        9.3.1  W-Rule ......................................... 259
        9.3.2  Z-Rule ......................................... 261
        9.3.3  High-Dimensional Asymptotic Results ............ 263
   9.4  Canonical Discriminant Analysis ....................... 265
        9.4.1  Canonical discriminant Method .................. 265
        9.4.2  Test for Additional Information ................ 267
        9.4.3  Selection of Variables ......................... 270
        9.4.4  Estimation of Dimensionality ................... 273
   9.5  Regression Approach ................................... 276
   9.6  High-Dimensional Approach ............................. 278
        9.6.1  Penalized Discriminant Analysis ................ 278
        9.6.2  Other Approaches ............................... 278
10 Principal Component Analysis ............................... 283
   10.1 Definition of Principal Components .................... 283
   10.2 Optimality of Principal Components .................... 286
   10.3 Sample Principal Components ........................... 288
   10.4 MLEs of the Characteristic Roots and Vectors .......... 291
   10.5 Distributions of the Characteristic Roots ............. 292
        10.5.1 Exact Distribution ............................. 293
        10.5.2 Large-sample Case .............................. 294
        10.5.3 High-dimensional Case .......................... 301
   10.6 Model Selection Approach for Covariance Structures .... 302
        10.6.1 General Approach ............................... 302
        10.6.2 Models for Equality of the Smaller Roots ....... 305
        10.6.3 Selecting a Subset of Original Variables ....... 306
   10.7 Methods Related to Principal Components ............... 308
        10.7.1 Fixed-Effect Principal Component Model ......... 308
        10.7.2 Random-Effect Principal Components Model ....... 310
   Problems ................................................... 311
11 Canonical Correlation Analysis ............................. 317
   11.1 Definition of Population Canonical Correlations and
        Variables ............................................. 317
   11.2 Sample Canonical Correlations ......................... 322
   11.3 Distributions of Canonical Correlations ............... 324
        11.3.1 Distributional Reduction ....................... 324
        11.3.2 Large-Sample Asymptotic Distribuitons .......... 326
        11.3.3 High-Dimensional Asymptotic Distributions ...... 327
        11.3.4 Fisher's z-Transformation ...................... 333
        11.4 Inference for Dimensionality ..................... 335
        11.4.1 Test of Dimensionality ......................... 335
        11.4.2 Estimation of Dimensionality ................... 337
   11.5 Selection of Variables ................................ 338
        11.5.1 Test for Redundancy ............................ 338
        11.5.2 Selection of Variables ......................... 342
   Problems ................................................... 345
12 Growth Curve Analysis ...................................... 349
   12.1 Growth Curve Model .................................... 349
   12.2 Statistical Inference: One Group ...................... 352
        12.2.1 Test for Adequacy .............................. 352
        12.2.2 Estimation and Test ............................ 354
        12.2.3 Confidence Intervals ........................... 357
   12.3 Statistical Methods: Several Groups ................... 359
   12.4 Derivation of Statistical Inference ................... 365
        12.4.1 General Multivariate Linear Model .............. 365
        12.4.2 Estimation ..................................... 366
        12.4.3 LR Tests for General Linear Hypotheses ......... 368
        12.4.4 Confidence Intervals ........................... 369
   12.5 Model Selection ....................................... 370
        12.5.1 AIC and CAIC ................................... 370
        12.5.2 Derivation of CAIC ............................. 371
        12.5.3 Extended Growth Curve Model .................... 373
   Problems ................................................... 376
13 Approximation to the Scale-Mixted Distributions ............ 379
   13.1 Introduction .......................................... 379
        13.1.1 Simple Example: Student's t-Distribution ....... 379
        13.1.2 Improving the Approximation .................... 381
   13.2 Error Bounds evaluated in sup-Norm .................... 384
        13.2.1 General Theory ................................. 384
        13.2.2 Scale-Mixed Normal ............................. 388
        13.2.3 Scale-Mixed Gamma .............................. 390
   13.3 Error Bounds evaluated in L1-Norm ..................... 395
        13.3.1 Some Basic Results ............................. 395
        13.3.2 Scale-Mixed Normal Density ..................... 397
        13.3.3 Scale-Mixed Gamma Density ...................... 399
        13.3.4 Scale-Mixed Chi-square Density ................. 402
   13.4 Multivariate Scale Mixtures ........................... 404
        13.4.1 General Theory ................................. 404
        13.4.2 Normal Case .................................... 410
        13.4.3 Gamma Case ..................................... 415
   Problems ................................................... 418
14 Approximation to Some Related Distributions ................ 423
   14.1 Location and Scale Mixtures ........................... 423
   14.2 Maximum of Multivariate Variables ..................... 426
        14.2.1 Distribution of the Maximum Component of 
               a Multi-variate Variable ....................... 426
        14.2.2 Multivariate t-Distribution .................... 427
        14.2.3 Multivariate F-Distribution .................... 429
   14.3 Scale Mixtures of the F-Distribution .................. 430
   14.4 Nonuniform Error Bounds ............................... 433
   14.5 Method of Characteristic Functions .................... 436
   Problems ................................................... 439
15 Error Bounds for Approximations of Multivariate Tests ...... 441
   15.1 Multivariate Scale Mixture and MANOVA Tests ........... 441
   15.2 Function of a Multivariate Scale Mixture .............. 443
   15.3 Hotelling's T20, Statistic ............................. 445
   15.4 Wilk's Lambda Distribution ............................ 448
        15.4.1 Univariate Case ................................ 448
        15.4.2 Multivariate Case .............................. 456
   Problems ................................................... 465
16 Error Bounds for Approximations to Some Other Statistics ... 467
   16.1 Linear Discriminant Function .......................... 467
        16.1.1 Representation as a Location and Scale 
               Mixture ........................................ 467
        16.1.2 Large-Sample Approximations .................... 472
        16.1.3 High-Dimensional Approximations ................ 474
        16.1.4 Some Related Topics ............................ 476
   16.2 Profile Analysis ...................................... 479
        16.2.1 Parallelism Model and MLE ...................... 479
        16.2.2 Distributions of fig.4 ............................. 481
        16.2.3 Confidence Interval for γ ...................... 486
   16.3 Estimators in the Growth Curve Model .................. 487
        16.3.1 Error Bounds ................................... 487
        16.3.2 Distribution of the Bilinear Form .............. 488
   16.4 Generalized Least Squares Estimators .................. 490
   Problems ................................................... 492

Appendix ...................................................... 495
   A.1  Some Results on Matrices .............................. 495
        A.1.1  Determinants and Inverse Matrices .............. 495
        A.1.2  Characteristic Roots and Vectors ............... 496
        A.1.3  Matrix Factorizations .......................... 497
        A.1.4  Idempotent Matrices ............................ 500
   A.2  Inequalities and Max-Min Problems ..................... 502
   A.3  Jacobians of Transformations .......................... 508

   Bibliography ............................................... 513

   Index ...................................................... 527


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:24 2019 Размер: 21,355 bytes.
Посещение N 1275 c 17.04.2012