Durst F. Fluid mechanics: an introduction to the theory of fluid flows (Berlin, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаDurst F. Fluid mechanics: an introduction to the theory of fluid flows. - Berlin: Springer, 2010. - xviii, 723 p.: ill. (some col.). - Incl. bibl. ref. - Ind.: p.719-723. - ISBN 978-3-642-09048-6
 

Оглавление / Contents
 
1  Introduction, Importance and Development of Fluid
   Mechanics .................................................... 1
   1.1  Fluid Flows and their Significance ...................... 1
   1.2  Sub-Domains of Fluid Mechanics .......................... 4
   1.3  Historical Developments ................................. 9
   References .................................................. 14
2  Mathematical Basics ......................................... 15
   2.1  Introduction and Definitions ........................... 15
   2.2  Tensors of Zero Order (Scalars) ........................ 16
   2.3  Tensors of First Order (Vectors) ....................... 17
   2.4  Tensors of Second Order ................................ 21
   2.5  Field Variables and Mathematical Operations ............ 23
   2.6  Substantial Quantities and Substantial Derivative ...... 26
   2.7  Gradient, Divergence, Rotation and Laplace Operators ... 27
   2.8  Line, Surface and Volume Integrals ..................... 29
   2.9  Integral Laws of Stokes and Gauss ...................... 31
   2.10 Differential Operators in Curvilinear Orthogonal
        Coordinates ............................................ 32
   2.11 Complex Numbers ........................................ 36
        2.11.1 Axiomatic Introduction to Complex Numbers ....... 37
        2.11.2 Graphical Representation of Complex Numbers ..... 38
        2.11.3 The Gauss Complex Number Plane .................. 39
        2.11.4 Trigonometric Representation .................... 39
        2.11.5 Stereographic Projection ........................ 41
        2.11.6 Elementary Function ............................. 42
   References .................................................. 47
3  Physical Basics ............................................. 49
   3.1  SoUds and Fluids ....................................... 49
   3.2  Molecular Properties and Quantities of Continuum
        Mechanics .............................................. 51
   3.3  Transport Processes in Newtonian Fluids ................ 55
        3.3.1  General Considerations .......................... 55
        3.3.2  Pressure in Gases ............................... 58
        3.3.3  Molecular-Dependent Momentum Transport .......... 62
        3.3.4  Molecular Transport of Heat and Mass in Gases ... 65
   3.4  Viscosity of Fluids .................................... 69
   3.5  Balance Considerations and Conservation Laws ........... 73
   3.6  Thermodynamic Considerations ........................... 76
   References .................................................. 81
4  Basics of Fluid Kinematics .................................. 83
   4.1  General Considerations ................................. 83
   4.2  Substantial Derivatives ................................ 84
   4.3  Motion of Fluid Elements ............................... 85
        4.3.1  Path Lines of Fluid Elements .................... 86
        4.3.2  Streak Lines of Locally Injected Tracers ........ 90
   4.4  Kinematic Quantities of Flow Fields .................... 94
        4.4.1  Stream Lines of a Velocity Field ................ 94
        4.4.2  Stream Function and Stream Lines of Two-
               Dimensional Flow Fields ......................... 98
        4.4.3  Divergence of a Flow Field ..................... 101
   4.5  Translation, Deformation and Rotation of Fluid
        Elements .............................................. 104
   4.6  Relative Motions ...................................... 108
   References ................................................. 112
5  Basic Equations of Fluid Mechanics ......................... 113
   5.1  General Considerations ................................ 113
   5.2  Mass Conservation (Continuity Equation) ............... 115
   5.3  Newton's Second Law (Momentum Equation) ............... 119
   5.4  The Navier-Stokes Equations ........................... 123
   5.5  Mechanical Energy Equation ............................ 128
   5.6  Thermal Energy Equation ............................... 130
   5.7  Basic Equations in Different Coordinate Systems ....... 135
        5.7.1  Continuity Equation ............................ 135
        5.7.2  Navier-Stokes Equations ........................ 136
   5.8  Special Forms of the Basic Equations .................. 142
        5.8.1  Transport Equation for Vorticity ............... 143
        5.8.2  The Bernoulli Equation ......................... 144
        5.8.3  Crocco Equation ................................ 146
        5.8.4  Further Forms of the Energy Equation ........... 147
   5.9  Transport Equation for Chemical Species ............... 150
   References ................................................. 151
6  Hydrostatics and Aerostatics ............................... 153
   6.1  Hydrostatics .......................................... 153
   6.2  Connected Containers and Pressure-Measuring
        Instruments ........................................... 163
        6.2.1  Communicating Containers ....................... 163
        6.2.2  Pressure-Measuring Instruments ................. 166
   6.3  Free Fluid Surfaces ................................... 168
        6.3.1  Surface Tension ................................ 168
        6.3.2  Water Columns in Tubes and Between Plates ...... 172
        6.3.3  Bubble Formation on Nozzles .................... 175
   6.4  Aerostatics ........................................... 183
        6.4.1  Pressure in the Atmosphere ..................... 183
        6.4.2  Rotating Containers ............................ 187
        6.4.3  Aerostatic Buoyancy ............................ 188
        6.4.4  Conditions for Aerostatics: Stability of
               Layers ......................................... 191
   References ................................................. 192
7  Similarity Theory .......................................... 193
   7.1  Introduction .......................................... 193
   7.2  Dimensionless Form of the Differential Equations ...... 197
        7.2.1  General Remarks ................................ 197
        7.2.2  Dimensionless Form of the Differential
               Equations ...................................... 199
        7.2.3  Considerations in the Presence of Geometric
               and Kinematic Similarities ..................... 204
        7.2.4  Importance of Viscous Velocity, Time and
               Length Scales .................................. 207
   7.3  Dimensional Analysis and π-Theorem .................... 212
   References ................................................. 219
8  Integral Forms of the Basic Equations ...................... 221
   8.1  Integral Form of the Continuity Equation .............. 221
   8.2  Integral Form of the Momentum Equation ................ 224
   8.3  Integral Form of the Mechanical Energy Equation ....... 225
   8.4  Integral Form of the Thermal Energy Equation .......... 228
   8.5  Applications of the Integral Form of the Basic
        Equations ............................................. 230
        8.5.1  Outflow from Containers ........................ 230
        8.5.2  Exit Velocity of a Nozzle ...................... 231
        8.5.3  Momentum on a Plane Vertical Plate ............. 232
        8.5.4  Momentum on an Inclined Plane Plate ............ 234
        8.5.5  Jet Deflection by an Edge ...................... 236
        8.5.6  Mixing Process in a Pipe of Constant Cross-
               Section ........................................ 237
        8.5.7  Force on a Turbine Blade in a Viscosity-Free
               Fluid .......................................... 239
        8.5.8  Force on a Periodical Blade Grid ............... 240
        8.5.9  Euler's Turbine Equation ....................... 242
        8.5.10 Power of Flow Machines ......................... 245
   References ................................................. 247
9  Stream Tube Theory ......................................... 249
   9.1  General Considerations ................................ 249
   9.2  Derivations of the Basic Equations .................... 251
        9.2.1  Continuity Equation ............................ 251
        9.2.2  Momentum Equation .............................. 253
        9.2.3  Bernoulli Equation ............................. 254
        9.2.4  The Total Energy Equation ...................... 256
   9.3  Incompressible, Flows ................................. 257
        9.3.1  Hydro-Mechanical Nozzle Flows .................. 257
        9.3.2  Sudden Cross-Sectional Area Extension .......... 258
   9.4  Compressible Flows .................................... 260
        9.4.1  Influences of Area Changes on Flows ............ 260
        9.4.2  Pressure-Driven Flows Through Converging
               Nozzles ........................................ 263
   References ................................................. 273
10 Potential Flows ............................................ 275
   10.1 Potential and Stream Functions ........................ 275
   10.2 Potential and Complex Functions ....................... 280
   10.3 Uniform Flow .......................................... 283
   10.4 Corner and Sector Flows ............................... 284
   10.5 Source or Sink Flows and Potential Vortex Flow ........ 288
   10.6 Dipole-Generated Flow ................................. 291
   10.7 Potential Flow Around a Cylinder ...................... 293
   10.8 Flow Around a Cylinder with Circulation ............... 296
   10.9 Summary of Important Potential Flows .................. 299
   10.10Flow Forces on Bodies ................................. 302
   References ................................................. 307
11  Wave Motions in Non-Viscous Fluids ........................ 309
   11.1 General Considerations ................................ 309
   11.2 Longitudinal Waves: Sound Waves in Gases .............. 313
   11.3 Transversal Waves: Surface Waves ...................... 318
        11.3.1 General Solution Approach ...................... 318
   11.4 Plane Standing Waves .................................. 323
   11.5 Plane Progressing Waves ............................... 325
   11.6 References to Further Wave Motions .................... 329
   References ................................................. 330
12 Introduction to Gas Dynamics ............................... 331
   12.1 Introductory Considerations ........................... 331
   12.2 Mach Lines and Mach Cone .............................. 335
   12.3 Non-Linear Wave Propagation, Formation of Shock
        Waves ................................................. 338
   12.4 Alternative Forms of the Bernoulli Equation ........... 341
   12.5 Flow with Heat Transfer (Pipe Flow) ................... 344
        12.5.1 Subsonic Flow .................................. 347
        12.5.2 Supersonic Flow ................................ 347
   12.6 Rayleigh and Fanno Relations .......................... 351
   12.7 Normal Compression Shock (Rankine-Hugoniot
        Equation) ............................................. 355
   References ................................................. 360
13 Stationary, One-Dimensional Fluid Flows of
   Incompressible, Viscous Fluids ............................. 361
   13.1 General Considerations ................................ 361
        13.1.1 Plane Fluid Flows .............................. 362
        13.1.2 Cylindrical Fluid Flows ........................ 363
   13.2 Derivations of the Basic Equations for Fully
        Developed Fluid Flows ................................. 364
        13.2.1 Plane Fluid Flows .............................. 364
        13.2.2 Cylindrical Fluid Flows ........................ 366
   13.3 Plane Couette Flow .................................... 366
   13.4 Plane Fluid Flow Between Plates ....................... 369
   13.5 Plane Film Flow on an Inclined Plate .................. 372
   13.6 Axi-Symmetric Film Flow ............................... 376
   13.7 Pipe Flow (Hagen-Poiseuille Flow) ..................... 379
   13.8 Axial Flow Between Two Cylinders ...................... 383
   13.9 Film Flows with Two Layers ............................ 386
   13.10Two-Phase Plane Channel Flow .......................... 388
   References ................................................. 391
14 Time-Dependent, One-Dimensional Flows of Viscous Fluids .... 393
   14.1 General Considerations ................................ 393
   14.2 Accelerated and Decelerated Fluid Flows ............... 397
        14.2.1 Stokes First Problem ........................... 397
        14.2.2 Diffusion of a Vortex Layer .................... 399
        14.2.3 Channel Flow Induced by Movements of Plates .... 402
        14.2.4 Pipe Flow Induced by the Pipe Wall Motion ...... 407
   14.3 Oscillating Fluid Flows ............................... 414
        14.3.1 Stokes Second Problem .......................... 414
   14.4 Pressure Gradient-Driven Fluid Flows .................. 417
        14.4.1 Starting Flow in a Channel ..................... 417
        14.4.2 Starting Pipe Flow ............................. 422
   References ................................................. 427
15 Fluid Flows of Small Reynolds Numbers ...................... 429
   15.1 General Considerations ................................ 429
   15.2 Creeping Fluid Flows Between Two Plates ............... 431
   15.3 Plane Lubrication Films ............................... 433
   15.4 Theory of Lubrication in Roller Bearings .............. 438
   15.5 The Slow Rotation of a Sphere ......................... 443
   15.6 The Slow Translatory Motion of a Sphere ............... 445
   15.7 The Slow Rotational Motion of a Cylinder .............. 451
   15.8 The Slow Translatory Motion of a Cylinder ............. 453
   15.9 Diffusion and Convection Influences on Flow Fields .... 459
   References ................................................. 461
16 Flows of Large Reynolds Numbers Boundary-Layer Flows ....... 463
   16.1 General Considerations and Derivations ................ 463
   16.2 Solutions of the Boundary-Layer Equations ............. 468
   16.3 Flat Plate Boundary Layer (Blasius Solution) .......... 470
   16.4 Integral Properties of Wall Boundary Layers ........... 474
   16.5 The Laminar, Plane, Two-Dimensional Free Shear
        Layer ................................................. 480
   16.6 The Plane, Two-Dimensional, Laminar Free Jet .......... 481
   16.7 Plane, Two-Dimensional Wake Flow ...................... 486
   16.8 Converging Channel Flow ............................... 489
   References ................................................. 492
17 Unstable Flows and Laminar-Turbulent Transition ............ 495
   17.1 General Considerations ................................ 495
   17.2 Causes of Flow Instabilities .......................... 501
        17.2.1 Stability of Atmospheric Temperature Layers .... 502
        17.2.2 Gravitationally Caused Instabilities ........... 505
        17.2.3 Instabilities in Annular Clearances Caused
               by Rotation .................................... 507
   17.3 Generalized Instability Considerations (Orr-
        Sommerfeld Equation) .................................. 512
   17.4 Classifications of Instabilities ...................... 517
   17.5 Transitional Boundary-Layer Flows ..................... 519
   References ................................................. 522
18 Turbulent Flows ............................................ 523
   18.1 General Considerations ................................ 523
   18.2 Statistical Description of Turbulent Flows ............ 527
   18.3 Basics of Statistical Considerations of Turbulent
        Flows ................................................. 528
        18.3.1 Fundamental Rules of Time Averaging ............ 528
        18.3.2 Fundamental Rules for Probability Density ...... 530
        18.3.3 Characteristic Function ........................ 537
   18.4 Correlations, Spectra and Time-Scales of Turbulence ... 538
   18.5 Time-Averaged Basic Equations of Turbulent Flows ...... 542
        18.5.1 The Continuity Equation ........................ 543
        18.5.2 The Reynolds Equation .......................... 544
        18.5.3 Mechanical Energy Equation for the Mean
               Flow Field ..................................... 546
        18.5.4 Equation for the Kinetic Energy of
               Turbulence ..................................... 550
   18.6 Characteristic Scales of Length, Velocity and Time
        of Turbulent Flows .................................... 553
   18.7 Turbulence Models ..................................... 557
        18.7.1 General Considerations ......................... 557
        18.7.2 General Considerations Concerning Eddy
               Viscosity Models ............................... 560
        18.7.3 Zero-Equation Eddy Viscosity Models ............ 565
        18.7.4 One-Equation Eddy Viscosity Models ............. 573
        18.7.5 Two-Equation Eddy Viscosity Models ............. 576
   18.8 Turbulent Wall Boundary Layers ........................ 578
   References ................................................. 585
19 Numerical Solutions of the Basic Equations ................. 587
   19.1 General Considerations ................................ 587
   19.2 General Transport Equation and Discretization
        of the Solution Region ................................ 591
   19.3 Discretization by Finite Differences .................. 595
   19.4 Finite-Volume Discretization .......................... 598
        19.4.1 General Considerations ......................... 598
        19.4.2 Discretization in Space ........................ 600
        19.4.3 Discretization with Respect to Time ............ 611
        19.4.4 Treatments of the Source Terms ................. 613
   19.5 Computation of Laminar Flows .......................... 614
        19.5.1 Wall Boundary Conditions ....................... 615
        19.5.2 Symmetry Planes ................................ 615
        19.5.3 Inflow Planes .................................. 615
        19.5.4 Outflow Planes ................................. 615
   19.6 Computations of Turbulent Flows ....................... 616
        19.6.1 Flow Equations to be Solved .................... 616
        19.6.2 Boundary Conditions for Turbulent Flows ........ 620
   References ................................................. 626
20 Fluid Flows with Heat Transfer ............................. 627
   20.1 General Considerations ................................ 627
   20.2 Stationary, Fully Developed Flow in Channels .......... 630
   20.3 Natural Convection Flow Between Vertical Plane
        Plates ................................................ 633
   20.4 Non-Stationary Free Convection Flow Near a Plane
        Vertical Plate ........................................ 637
   20.5 Plane-Plate Boundary Layer with Plate Heating at
        Small Prandtl Numbers ................................. 641
   20.6 Similarity Solution for a Plate Boundary Layer with
        Wall Heating and Dissipative Warming .................. 644
   20.7 Vertical Plate Boundary-Layer Flows Caused by
        Natural Convection .................................... 647
   20.8 Similarity Considerations for Flows with Heat
        Transfer .............................................. 649
   References ................................................. 651
21 Introduction to Fluid-Flow Measurement ..................... 653
   21.1 Introductory Considerations ........................... 653
   21.2 Measurements of Static Pressures ...................... 656
   21.3 Measurements of Dynamic Pressures ..................... 660
   21.4 Applications of Stagnation-Pressure Probes ............ 662
   21.5 Basics of Hot-Wire Anemometry ......................... 664
        21.5.1 Measuring Principle and Physical Principles .... 664
        21.5.2 Properties of Hot-Wires and Problems
               of Application ................................. 667
        21.5.3 Hot-Wire Probes and Supports ................... 672
        21.5.4 Cooling Laws for Hot-Wire Probes ............... 676
        21.5.5 Static Calibration of Hot-Wire Probes .......... 680
   21.6 Turbulence Measurements with Hot-Wire Anemometers ..... 685
   21.7 Laser Doppler Anemometry .............................. 694
        21.7.1 Theory of Laser Doppler Anemometry ............. 694
        21.7.2 Optical Systems for Laser Doppler
               Measurements ................................... 701
        21.7.3 Electronic Systems for Laser Doppler
               Measurements ................................... 705
        21.7.4 Execution of LDA-Measurements: One-Dimensional
               LDA Systems .................................... 715
   References ................................................. 717

Index ......................................................... 719


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:24 2019 Размер: 25,306 bytes.
Посещение N 1635 c 17.04.2012