Bluman G.W. Applications of symmetry methods to partial differential equations (New York, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаBluman G.W. Applications of symmetry methods to partial differential equations / G.W.Bluman, A.F.Cheviakov, S.C.Anco. - New York: Springer, 2010. - xix, 398 p.: ill. - Ref.: p.369-381. - Indexes: p.383-398. - ISBN 978-0-387-98612-8
 

Место хранения: 013 | Институт математики СО РАН | Новосибирск | Библиотека

Оглавление / Contents
 
Preface ........................................................ ix

Introduction ................................................. xiii

1  Local Transformations and Conservation Laws .................. 1
   1.1  Introduction ............................................ 1
   1.2  Local Transformations ................................... 5
        1.2.1  Point transformations ............................ 6
        1.2.2  Contact transformations .......................... 8
        1.2.3  Higher-order transformations .................... 10
        1.2.4  One-parameter higher-order transformations ...... 10
        1.2.5  Point symmetries ................................ 16
        1.2.6  Contact and higher-order symmetries ............. 20
        1.2.7  Equivalence transformations and symmetry
               classification .................................. 21
        1.2.8  Recursion operators for local symmetries ........ 24
   1.3  Conservation Laws ...................................... 38
        1.3.1  Local conservation laws ......................... 38
        1.3.2  Equivalent conservation laws .................... 42
        1.3.3  Multipliers for conservation laws. Euler
               operators ....................................... 43
        1.3.4  The direct method for construction of
               conservation laws. Cauchy-Kovalevskaya form ..... 46
        1.3.5  Examples ........................................ 50
        1.3.6  Linearizing operators and adjoint equations ..... 53
        1.3.7  Determination of fluxes of conservation laws
               from multipliers ................................ 56
        1.3.8  Self-adjoint PDE systems ........................ 64
   1.4  Noether's Theorem ...................................... 70
        1.4.1  Euler-Lagrange equations ........................ 71
        1.4.2  Noether's formulation of Noether's theorem ...... 72
        1.4.3  Boyer's formulation of Noether's theorem ........ 75
        1.4.4  Limitations of Noether's theorem ................ 77
        1.4.5  Examples ........................................ 79
   1.5  Some Connections Between Symmetries and Conservation
        Laws ................................................... 89
        1.5.1  Use of symmetries to find new conservation
               laws from known conservation laws ............... 90
        1.5.2  Relationships among symmetries, solutions of
               adjoint equations, and conservation laws ....... 107
   1.6  Discussion ............................................ 117
2  Construction of Mappings Relating Differential Equations ... 121
   2.1  Introduction .......................................... 121
   2.2  Notations; Mappings of Infinitesimal Generators ....... 123
        2.2.1  Theorems on invertible mappings ................ 127
   2.3  Mapping of a Given PDE to a Specific Target PDE ....... 128
        2.3.1  Construction of non-invertible mappings ........ 129
        2.3.2  Construction of an invertible mapping by a
               point transformation ........................... 133
   2.4  Invertible Mappings of Nonlinear PDEs to Linear PDEs
        Through Symmetries .................................... 139
        2.4.1  Invertible mappings of nonlinear PDE systems
               (with at least two dependent variables) to
               linear PDE systems ............................. l41
        2.4.2  Invertible mappings of nonlinear PDE systems
               (with one dependent variable) to linear PDE
               systems ........................................ 146
   2.5  Invertible Mappings of Linear PDEs to Linear PDEs
        with Constant Coefficients ............................ 158
        2.5.1  Examples of mapping variable coefficient
               linear PDEs to constant coefficient linear
               PDEs through invertible point
               transformations ................................ 163
        2.5.2  Example of finding the most general mapping
               of a given constant coefficient linear PDE to
               some constant coefficient linear PDE ........... 168
   2.6  Invertible Mappings of Nonlinear PDEs to Linear PDEs
        Through Conservation Law Multipliers .................. 173
        2.6.1  Computational steps ............................ 177
        2.6.2  Examples of linearizations of nonlinear PDEs
               through conservation law multipliers ........... 179
   2.7  Discussion ............................................ 184
3  Nonlocally Related PDE Systems ............................. 187
   3.1  Introduction .......................................... 187
   3.2  Nonlocally Related Potential Systems and Subsystems
        in Two Dimensions ..................................... 191
        3.2.1  Potential systems .............................. 192
        3.2.2  Nonlocally related subsystems .................. 193
   3.3  Trees of Nonlocally Related PDE Systems ............... 199
        3.3.1  Basic procedure of tree construction ........... 200
        3.3.2  A tree for a nonlinear diffusion equation ...... 202
        3.3.3  A tree for planar gas dynamics (PGD)
               equations ...................................... 204
   3.4  Nonlocal Conservation Laws ............................ 209
        3.4.1  Conservation laws arising from nonlocally
               related systems ................................ 210
        3.4.2  Nonlocal conservation laws for. diffusion-
               convection equations ........................... 212
        3.4.3  Additional conservation laws of nonlinear
               telegraph equations ............................ 214
   3.5  Extended TYee Construction Procedure .................. 222
        3.5.1  An extended tree construction procedure ........ 223
        3.5.2  An extended tree for a nonlinear diffusion
               equation ....................................... 225
        3.5.3  An extended tree for a nonlinear wave
               equation ....................................... 228
        3.5.4  An extended tree for the planar gas dynamics
               equations ...................................... 232
   3.6  Discussion ............................................ 242
4  Applications of Nonlocally Related PDE Systems ............. 245
   4.1  Introduction .......................................... 245
   4.2  Nonlocal Symmetries ................................... 248
        4.2.1  Nonlocal symmetries of a nonlinear diffusion
               equation ....................................... 251
        4.2.2  Nonlocal symmetries of a nonlinear wave
               equation ....................................... 256
        4.2.3  Classification of nonlocal symmetries of
               nonlinear telegraph equations arising from
               point symmetries of potential systems .......... 270
        4.2.4  Nonlocal symmetries of nonlinear telegraph
               equations with power law nonlinearities ........ 271
        4.2.5  Nonlocal symmetries of the planar gas
               dynamics equations ............................. 276
   4.3  Construction of Non-invertible Mappings Relating
        PDEs .................................................. 283
        4.3.1  Non-invertible mappings of nonlinear PDE
               systems to linear PDE systems .................. 284
        4.3.2  Non-invertible mappings of linear PDEs with
               variable coefficients to linear PDEs with
               constant coefficients .......................... 290
   4.4  Discussion ............................................ 294
5  Further Applications of Symmetry Methods: Miscellaneous
   Extensions ................................................. 297
   5.1  Introduction .......................................... 297
   5.2  Applications of Symmetry Methods to the Construction
        of Solutions of PDEs .................................. 301
        5.2.1  The classical method ........................... 302
        5.2.2  The nonclassical method ........................ 306
        5.2.3  Invariant solutions arising from nonlocal
               symmetries that are local symmetries of
               nonlocally related systems ..................... 314
        5.2.4  Further extensions of symmetry methods for
               construction of solutions of PDEs connected
               with nonlocally related systems ................ 320
   5.3  Nonlocally Related PDE Systems in Three or More
        Dimensions ............................................ 333
        5.3.1  Divergence-type conservation laws and
               resulting potential systems .................... 334
        5.3.2  Nonlocally related subsystems .................. 336
        5.3.3  Tree construction, nonlocal conservation laws,
               and nonlocal symmetries ........................ 337
        5.3.4  Lower-degree conservation laws and related
               potential systems .............................. 341
        5.3.5  Examples of applications of nonlocally
               related systems in higher dimensions ........... 343
        5.3.6  Symmetries and exact solutions of the three-
               dimensional MHD equilibrium equations .......... 350
   5.4  Symbolic Software ..................................... 357
        5.4.1  An example of symbolic computation of point
               symmetries ..................................... 357
        5.4.2  An example of point symmetry classification .... 359
        5.4.3  An example of symbolic computation of
               conservation laws .............................. 363
   5.5  Discussion ............................................ 364

References .................................................... 369

Theorem, Corollary and Lemma Index ............................ 383

Author Index .................................................. 385

Subject Index ................................................. 389


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:24 2019 Размер: 13,933 bytes.
Посещение N 1592 c 17.04.2012