Preface ................................................... XIII
List of Contributors ...................................... XVII
Part 1 Biological and Chemical Analysis .................... 1
1 Photoswitchable Nanoprobes for Biological Imaging
Applications
Zhiyuan Tian, Wuwei Wu, and Alexander D.Q. Li
1.1 Introduction ............................................ 3
1.2 Photoswitchable Fluorescent Nanoprobes .................. 4
1.2.1 Single-Color (On-Off) Fluorescent Nanoprobes ..... 5
1.2.1.1 Fluorescence Modulation of
Semiconductor Nanocrystals .............. 5
1.2.1.2 Isomerization of Photochrome
Spiropyrans ............................. 7
1.2.1.3 Isomerization of Photochromic
Diarylethenes ........................... 9
1.2.1.4 Structural Conversion of a
Photoswitchable Protein ................ 11
1.2.2 Dual-Color Fluorescence Nanoprobes .............. 13
1.2.2.1 Green to Red Fluorescence Conversion
with Proteins .......................... 13
1.2.2.2 FRET-Based Fluorescence
Photoswitching ......................... 15
1.2.2.3 Photoswitchable Nanoparticles Based
on a Single Dye ........................ 17
1.2.3 Photoswitchable Fluorescent Nanoparticles for
Bioimaging ...................................... 19
1.3 Photoswitchable Magnetic Nanoparticles ................. 22
1.3.1 Nanoparticles with Photoswitchable
Magnetization ................................... 22
1.3.2 Magnetic Nanoparticles with Photoswitchable
Fluorescence .................................... 24
1.4 Future Perspectives .................................... 25
Acknowledgments ........................................ 26
References ............................................. 26
2 Applications of Semiconductor Quantum Dots in Chemical and
Biological Analysis ......................................... 31
Xingguang Su and Qiang Ma
2.1 Introduction ........................................... 31
2.2 History ................................................ 32
2.3 Classifications ........................................ 32
2.3.1 II-VI Quantum Dots .............................. 32
2.3.2 III-V Quantum Dots .............................. 33
2.3.3 IV-VI Quantum Dots .............................. 34
2.3.4 Core-Shell Quantum Dots ......................... 34
2.3.5 Alloyed Quantum Dots ............................ 35
2.4 Characteristics ........................................ 35
2.4.1 Electronic Properties ........................... 36
2.4.2 Unique Optical Properties ....................... 38
2.5 Synthesis and Surface Chemistry ........................ 40
2.5.1 Organometallic Approaches ....................... 40
2.5.2 Aqueous Phase Colloidal Synthesis ............... 41
2.5.3 Modification of Surface Chemistry ............... 41
2.6 Trace Analysis Using Quantum Dots ...................... 42
2.6.1 Determinations Based on Direct Fluorescence
Response ........................................ 42
2.6.2 Fluorescence Resonance Energy Transfer (FRET)
Analysis Using QDs .............................. 44
2.6.3 Room-Temperature Phosphorescence Detection ...... 45
2.6.4 Near-Infrared Detection Using QDs ............... 46
2.6.5 Rayleigh Light Scattering (RLS) Analysis ........ 48
2.6.6 Chemiluminescence Analysis ...................... 48
2.6.7 Electrochemical Analysis ........................ 50
2.6.8 Chemosensors and Biosensors ..................... 51
2.6.9 "Nano-On-Micro" Assay ........................... 52
2.7 Summary ................................................ 54
Acknowledgments ........................................ 55
References ............................................. 55
3 Nanomaterial-Based Electrochemical Biosensors and
Bioassays ................................................... 61
Guodong Liu, Xun Mao, Anant Curung, Meenu Baloda, Yuehe
Lin, and Yuqing He
3.1 Introduction ........................................... 61
3.2 Nanomaterial Labels Used in Electrochemical
Biosensors and Bioassays ............................... 63
3.2.1 Metal Nanoparticles ............................. 63
3.2.1.1 Metal NP Labels for Electrochemical
Detection of DNA ....................... 64
3.2.1.2 Metal NP Labels for Electrochemical
Immunoassays and Immunosensors ......... 68
3.2.2 Semiconductor Nanoparticles ..................... 70
3.2.2.1 QD Labels for Electrochemical
Detection of DNA ....................... 70
3.2.2.2 QD Labels for Electrochemical
Immunoassay ............................ 72
3.2.3 Carbon Nanotubes ................................ 73
3.2.4 Apoferritin Nanovehicles ........................ 75
3.2.5 Liposomes ....................................... 77
3.2.6 Silica Nanoparticles ............................ 79
3.2.7 Nanowires and Nanorods .......................... 81
3.3 Nanomaterial-Based Electrochemical Devices for
Point-of-Care Diagnosis ................................ 82
3.4 Conclusions ............................................ 84
Acknowledgments ........................................ 85
References ............................................. 85
4 Chemical and Biological Sensing by Electron Transport in
Nanomaterials ............................................... 89
Jai-Pil Choi
4.1 Introduction ........................................... 89
4.2 Electron Transport through Metal Nanoparticles ......... 90
4.2.1 Coulomb Blockade Effect and Single Electron
Transfer ........................................ 91
4.2.2 Voltammetry of Metal Nanoparticles in
Solutions ....................................... 92
4.2.3 Electron Transport through Metal Nanoparticle
Assemblies ...................................... 95
4.3 Sensing Applications Based on Electron Transport in
Nanoparticle Assemblies ................................ 97
4.3.1 Chemical Sensors ................................ 97
4.3.1.1 Sensors Based on Metal Nanoparticle
Films .................................. 98
4.3.1.2 Sensors Based on Semiconducting Oxide
Nanoparticles ......................... 101
4.3.2 Biosensors ..................................... 103
4.4 Concluding Remarks .................................... 106
Acknowledgments ....................................... 107
References ............................................ 108
5 Micro- and Nanofluidic Systems for Trace Analysis of
Biological Samples ......................................... 111
Debashis Dutta
5.1 Introduction .......................................... 111
5.2 Nucleic Acid Analysis ................................. 112
5.2.1 Miniaturization of PCR Devices ................. 112
5.2.2 Integration of PCR with Separation, DNA
Hybridization, and Sample Preparation .......... 115
5.2.3 Novel Micro-and Nanofluidic Tools for DNA
Analysis ....................................... 116
5.3 Protein Analysis ...................................... 118
5.3.1 Protein Separations ............................ 118
5.3.2 On-Chip Protein Pre-concentration .............. 121
5.3.3 Integrated Microfluidic Devices for Protein
Analysis ....................................... 122
5.4 Microfluidic Devices for Single-Cell Analysis ......... 123
5.5 Conclusion ............................................ 127
References ............................................ 128
Part 2 Environmental Analysis ............................. 133
6 Molecularly Imprinted Polymer Submicron Particles
Tailored for Extraction of Trace Estrogens in Water ........ 135
Edward Lai, Anastasiya Dzhun, and Zack De Maleki
6.1 Introduction .......................................... 135
6.2 Principle of Molecular Recognition by Imprinting ...... 138
6.2.1 Monomers, Crosslinkers, and Porogen Solvents ... 139
6.2.2 Rebinding of Target Analytes ................... 140
6.2.3 Computational Modeling ......................... 141
6.3 Analytical Application of MIPs for
Biopharmaceuticals and Toxins ......................... 143
6.4 Preparation of MIP Submicron Particles ................ 146
6.5 Binding Properties of MIP Submicron Particles with
E2 .................................................... 148
6.5.1 Models of E2 Binding with MIP Submicron
Particles ...................................... 149
6.5.2 Kinetics of MIP Binding with E2 ................ 150
6.6 Trace Analysis of E2 in Wastewater Treatment .......... 150
6.7 Current Progress ...................................... 152
6.8 Recent Advances in MIP Technology for Continuing
Development ........................................... 153
Acknowledgments ....................................... 156
References ............................................ 156
7 Trace Detection of High Explosives with Nanomaterials ...... 161
Wujian Miao, Cunwang Ge, Suman Parajuli, Jian Shi, and
Xiaohui Jing
7.1 Introduction .......................................... 161
7.2 Techniques for Trace Detection of High Explosives ..... 164
7.2.1 Electrochemical Sensors ........................ 164
7.2.1.1 Nanomaterial Modified Electrodes ...... 165
7.2.1.2 "Artificial Peroxidase"-Modified
Electrodes Based on Prussian Blue ..... 166
7.2.2 Electrogenerated Chemiluminescence ............. 167
7.2.3 Fluorescence-Based Sensors ..................... 169
7.2.3.1 Quenching Sensors Based on
Fluorescent Polymer Porous Films ...... 169
7.2.3.2 Quenching Sensors Based on
Fluorescent Nanofibril Films .......... 171
7.2.3.3 Quenching Sensors Based on Quantum
Dots .................................. 172
7.2.3.4 Quenching Sensors Based on Organic
Supernanostructures ................... 175
7.2.3.5 Fluoroimmunoassays Using QD-Antibody
Conjugates ............................ 176
7.2.3.6 Displacement Immunosensors ............ 176
7.2.4 Microcantilever Sensors ........................ 178
7.2.5 Metal Oxide Semiconductor (MOS) Nanoparticle
Gas Sensors .................................... 180
7.2.6 Surface-Enhanced Ramam Scattering
Spectroscopy ................................... 180
7.3 Conclusions ........................................... 181
Acknowledgments ....................................... 182
References ............................................ 182
8 Nanostructured Materials for Selective Collection of
Trace-Level Metals from Aqueous Systems .................... 191
Sean A. Fontenot, Timothy C. Carter, Darren W. Johnson,
R. Shane Addleman, Marvin C. Warner, Wassana Yantasee,
Cynthia L. Warner, Glen E. Fryxell, and John T. Bays
8.1 Introduction .......................................... 191
8.2 Sorbents for Trace-Metal Collection and Analysis:
Relevant Figures of Merit ............................. 192
8.3 Thiol-Functionalized Ordered Mesoporous Silica for
Heavy Metal Collection ................................ 194
8.3.1 Performance Comparisons of Sorption Materials
for Environmental Samples ...................... 194
8.3.2 Performance Comparisons of Sorption Materials
for Biological Samples ......................... 197
8.4 Surface-Functionalized Magnetic Nanoparticles for
Heavy Metal Capture and Detection ..................... 200
8.5 Nanoporous Carbon Based Sorbent Materials ............. 206
8.5.1 Chemically-Modified Activated Carbons .......... 207
8.5.2 Templated Mesoporous Carbons ................... 209
8.6 Other Nanostructured Sorbent Materials ................ 212
8.6.1 Zeolites ....................................... 212
8.6.2 Ion-Imprinted Polymers ......................... 214
8.7 Concluding Thoughts ................................... 215
Acknowledgments ....................................... 217
References ............................................ 217
9 Synthesis and Analysis Applications of TiO2-Based
Nanomaterials .............................................. 223
Aize Li, Benjamen C. Sun, Nenny Fahruddin, Julia X. Zhao,
and David T. Pierce
9.1 Introduction .......................................... 223
9.2 Synthesis of TiO2 Nanostructures ...................... 225
9.2.1 TiO2 Nanoparticles ............................. 225
9.2.2 Mesoporous ТiO2 ................................ 225
9.2.3 TiO2 Nanotubes ................................. 225
9.2.4 TiO2-Based Nanohybrids ......................... 226
9.2.4.1 TiO2-Metal Nanoparticle Hybrids ....... 227
9.2.4.2 TiO2-SiO2 Hybrids ..................... 228
9.2.5 Fabrication of TiO2 Nanofilms .................. 228
9.3 Applications of TiO2-Based Nanomaterials for
Chemical Analysis ..................................... 229
9.3.1 Analysis of Gas-Phase Samples .................. 229
9.3.1.1 Hydrogen .............................. 230
9.3.1.2 Carbon Monoxide ....................... 232
9.3.1.3 Oxygen ................................ 233
9.3.1.4 Water Vapor ........................... 233
9.3.2 Analysis of Aqueous Samples .................... 235
9.3.2.1 Ion Detection and Sensing ............. 235
9.3.2.2 Metal Ion Extraction .................. 235
9.3.2.3 Organic Compounds ..................... 237
9.3.3 Biosensors ..................................... 240
9.3.3.1 Voltammetric Biosensors ............... 240
9.3.3.2 Optical Biosensors .................... 245
9.4 Conclusions ........................................... 246
Acknowledgments ....................................... 247
References ............................................ 247
10 Nanomaterials in the Environment: the Good, the Bad,
and the Ugly ............................................... 255
Rhett J. Clark, Jonathan C.C. Veinot, and Charles S. Wong
10.1 Introduction .......................................... 255
10.2 The Good: Nanomaterials for Environmental Sensing ..... 256
10.2.1 Colorimetric Detection ......................... 256
10.2.1.1 Noble Metal Nanoparticles ............. 256
10.2.1.2 DNAzymes .............................. 260
10.2.1.3 Monolithic Nanoporous Sensors ......... 263
10.2.2 Fluorescence-Based Detection .................... 264
10.2.3 Fluorescence Quenching .......................... 267
10.3 The Bad: Environmental Fate of Nanomaterials .......... 269
10.3.1 Environmental Fate ............................. 270
10.3.1.1 Factors Affecting Aggregation ......... 270
10.3.1.2 Nanoparticles in Porous Media ......... 272
10.3.2 Toxicity ....................................... 273
10.4 The Ugly: Detection of Nanomaterials in the
Environment ........................................... 275
10.5 Conclusions ........................................... 278
Acknowledgments ....................................... 279
References ............................................ 279
Part 3 Advanced Methods and Materials ..................... 283
11 Electroanalytical Measurements at Electrodes Modified
with Metal Nanoparticles ................................... 285
James A. Cox and Shouzhong Zou
11.1 Introduction .......................................... 285
11.2 Modification of Electrodes with Nanoparticles ......... 286
11.2.1 Fabrication of Two-Dimensional Arrays of
Nanoparticles .................................. 286
11.2.1.1 Seed-Mediated Formation of a Two-
Dimensional Array of Nanoparticles .... 286
11.2.1.2 Direct Deposition of Nanoparticles
on Bare Electrodes .................... 289
11.2.2 Deposition of Three-Dimensional Films
Containing Metal Nanoparticles ................. 293
11.2.2.1 Layer-by-Layer Electrostatic
Assemblies Containing Metal
Nanoparticles ......................... 294
11.2.2.2 Fabrication of Conducting Polymer
Films Doped with Metal
Nanoparticles ......................... 295
11.3 Geometric Factors in Electrocatalysis by
Nanoparticles ......................................... 296
11.3.1 Particle Size Effects on Electrocatalysis ...... 296
11.3.2 Particle Shape Dependence ...................... 299
11.3.3 Particle Composition Dependence ................ 302
11.4 Analytical Applications of Electrodes Modified with
Metal Nanoparticles ................................... 304
11.4.1 Determination of Inorganic Analytes ............ 305
11.4.2 Determination of Organic and Biologically
Important Analytes ............................. 310
11.5 Conclusions ........................................... 313
References ............................................ 314
12 Single Molecule and Single event Nanoelectrochemical
Analysis ................................................... 319
Shanlin Pan and Cangli Wang
12.1 Introduction .......................................... 319
12.2 Basic Concepts ........................................ 320
12.2.1 Electrochemistry ............................... 320
12.2.2 Nanoelectrodes ................................. 320
12.3 Single-Molecule Electrochemistry ...................... 321
12.3.1 Single-Molecule Electrochemistry Using
Nanoelectrodes ................................. 321
12.3.2 Single-Molecule Spectroelectrochemistry ........ 323
12.4 Single-Nanoparticle Electrochemical Detection ......... 326
12.4.1 Single-Nanoparticle Detection Using
Nanoparticle Collision at a Microelectrode ..... 326
12.4.2 Single-Nanoparticle Electrochemistry Using
Single-Molecule Spectroscopy ................... 328
12.5 Nanoelectrodes for Ultrasensitive Electrochemical
Detection and High-Resolution Imaging ................. 328
12.5.1 Nanoelectrode Fabrication ...................... 328
12.5.2 Mass Transfer near a Nanoelectrode ............. 329
12.5.3 Combined Optical and Electrochemical Imaging ... 330
12.6 Electrochemical Detection in Nanodomains of
Biological Systems .................................... 333
12.7 Localized Delivery and Imaging by Using Single
Nanopipette-Based Conductance Techniques .............. 333
12.8 Final Remarks ......................................... 335
Acknowledgments ....................................... 336
References ............................................ 337
13 Analytical Applications of Block Copolymer-Derived
Nanoporous Membranes ....................................... 341
Takashi Ito and D.M. Neluni T. Perera
13.1 Introduction .......................................... 341
13.2 Monolithic Membranes Containing Arrays of
Cylindrical Nanoscale Pores ........................... 341
13.3 BCP-Derived Monoliths Containing Arrays of
Cylindrical Nanopores ................................. 344
13.4 Surface Functionalization of BCP-Derived Cylindrical
Nanopores ............................................. 346
13.5 Investigation of the Permeation of Molecules through
BCP-Derived Nanoporous Monoliths and their
Analytical Applications ............................... 347
13.5.1 Permeation of Small Molecules through
PS-b-PMMA-Derived Nanoporous Monoliths ......... 347
13.5.2 Regulation of Molecular Permeability Based on
Electrostatic Interactions ..................... 348
13.5.3 Influence of Supporting Electrolyte
Concentration to Effective Nanopore Diameter ... 350
13.5.4 Permeation of Nanoparticles, Polymers, and
Biomacromolecules through BCP-Derived
Nanopores ...................................... 351
13.6 Conclusions ........................................... 355
Acknowledgments ....................................... 356
References ............................................ 356
14 Synthesis and Applications of Cold Nanorods ................ 359
Carrie L John, Shuping Xu, Yuhuijin, Shaina L. Strating,
and Julia Xiaojun Zhao
14.1 Introduction .......................................... 359
14.2 Au Nanorod Synthesis .................................. 360
14.2.1 Electrochemical Synthesis ...................... 360
14.2.1.1 Electrochemical Synthesis Employing
a Hard Template ....................... 360
14.2.1.2 Electrochemical Synthesis Employing
a Soft Template ....................... 362
14.2.2 Photochemical Synthesis ........................ 364
14.2.3 Seed-Mediated Growth ........................... 364
14.3 Signal Enhancement .................................... 367
14.3.1 Plasmon Resonance .............................. 367
14.3.2 Surface-Enhanced Raman Scattering .............. 368
14.3.3 Luminescence Enhancement of Dye Molecules ...... 369
14.3.4 Enhanced Luminescence of Au Nanorods ........... 370
14.4 Applications of Au Nanorods in Trace Analysis ......... 372
14.4.1 Fabrication of Au Nanorod-Based Sensors ........ 372
14.4.1.1 Fabrication of SERS and LSPR
Sensors ............................... 372
14.4.1.2 Fabrication of Luminescence Sensors ... 372
14.4.2 Bioimaging and Bioanalysis Based on Optical
Measurements ................................... 374
14.4.3 Bioanalysis Based on Electrochemical
Measurements ................................... 376
14.5 Applications of Au Nanorods in Other Fields ........... 377
14.5.1 Au Nanorods as Supporting Material for
Electrocatalyts ................................ 377
14.5.2 Au Nanorod-Based Photothermal Therapy .......... 377
14.6 Conclusions ........................................... 378
Acknowledgments ....................................... 379
References ............................................ 379
Index ...................................................... 383
|