Streater R.F. Statistical dynamics: a stochastic approach to nonequilibrium thermodynamics (London; Hackensack, 2009). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаStreater R.F. Statistical dynamics: a stochastic approach to nonequilibrium thermodynamics. - 2nd ed. - London: Imperial College Press; Hackensack: Distributed by World Scientific, 2009. - x, 382 p.: ill. - Bibliogr.: p.367-376. - Ind.: p.377-382. - ISBN-10 1-84816-250-2; ISBN-13 978-1-84816-250-1
 

Место хранения: 015 | Библиотека Института гидродинамики CO РАН | Новосибирск

Оглавление / Contents
 
Preface ......................................................... v

Classical Statistical Dynamics .................................. 1

1  Introduction ................................................. 3
2  Probability Theory .......................................... 13
   2.1  Sample Spaces and States ............................... 13
   2.2  Random Variables, Algebras ............................. 24
   2.3  Entropy ................................................ 34
   2.4  Exercises .............................................. 39
3  Linear Dynamics ............................................. 43
   3.1  Reversible Dynamics .................................... 43
   3.2  Random Dynamics ........................................ 48
   3.3  Convergence to Equilibrium ............................. 60
   3.4  Markov Chains .......................................... 66
   3.5  Exercises .............................................. 69
4  Isolated Dynamics ........................................... 73
   4.1  The Boltzmann Map ...................................... 73
   4.2  The Heat-Particle ...................................... 87
   4.3  The Hard-Core Model of Chemical Kinetics ............... 94
        4.3.1  Isomers and Diffusion in a Force-Field .......... 95
        4.3.2  Markov Dynamics ................................ 100
        4.3.3  Entropy Production ............................. 102
        4.3.4  Osmosis ........................................ 103
        4.3.5  Exchange Diffusion ............................. 104
        4.3.6  General Diffusions ............................. 105
   4.4  Chemical Reactions .................................... 106
        4.4.1  Unimolecular Reactions ......................... 106
        4.4.2  Balanced Reactions ............................. 107
   4.5  Energy of Solvation ................................... 111
   4.6  Activity-led Reactions ................................ 111
   4.7  Exercises ............................................. 119
5  Isothermal Dynamics ........................................ 123
   5.1  Legendre Transforms ................................... 124
   5.2  The Free-energy Theorem ............................... 126
   5.3  Chemical Kinetics ..................................... 130
   5.4  Convergence in Norm ................................... 137
   5.5  Dilation of Markov Chains ............................. 146
   5.6  Exercises ............................................. 149
6  Driven Systems ............................................. 151
   6.1  Sources and Sinks ..................................... 151
   6.2  A Poor Conductor ...................................... 152
   6.3  A Driven Chemical System .............................. 155
   6.4  How to Add Noise ...................................... 162
   6.5  Exercises ............................................. 165
7  Fluid Dynamics ............................................. 167
   7.1  Hydrostatics of a Gas of Hard Spheres ................. 168
   7.2  The Fundamental Equation .............................. 171
   7.3  The Euler Equations ................................... 177
   7.4  Entropy Production .................................... 178
   7.5  A Correct Navier-Stokes System ........................ 181

Quantum Statistical Dynamics .................................. 187

8  Introduction to Quantum Theory ............................. 189
9  Quantum Probability ........................................ 197
   9.1  Algebras of Observables ............................... 197
   9.2  States ................................................ 204
   9.3  Quantum Entropy ....................................... 213
   9.4  Exercises ............................................. 217
10 Linear Quantum Dynamics .................................... 221
   10.1 Reversible Dynamics ................................... 221
   10.2 Random Quantum Dynamics ............................... 224
   10.3 Quantum Dynamical Maps ................................ 228
   10.4 Exercises ............................................. 236
11 Isolated Quantum Dynamics .................................. 237
   11.1 The Quantum Boltzmann Map ............................. 237
   11.2 The Quantum Heat-Particle ............................. 240
   11.3 Fermions and Ions with a Hard Core .................... 256
   11.4 The Quantum Boltzmann Equation ........................ 272
   11.5 Exercises ............................................. 281
12 Isothermal and Driven Systems .............................. 283
   12.1 Isothermal Quantum Dynamics ........................... 283
   12.2 Convergence to Equilibrium ............................ 289
   12.3 Driven Quantum Systems ................................ 292
   12.4 Exercises ............................................. 296
13 Infinite Systems ........................................... 297
   13.1 The Algebra of an Infinite System ..................... 299
   13.2 The Reversible Dynamics ............................... 300
   13.3 Return to Equilibrium ................................. 302
   13.4 Irreversible Linear Dynamics .......................... 306
   13.5 Exercises ............................................. 309
14 Proof of the Second Law .................................... 311
   14.1 von Neumann Entropy ................................... 311
   14.2 Entropy Increase in Quantum Mechanics ................. 312
   14.3 The Quantum Kac Model ................................. 314
   14.4 Equilibrium ........................................... 315
   14.5 Thee-Limit ............................................ 316
   14.6 The Marginals and Entropy ............................. 316
   14.7 The Results ........................................... 317
15 Information Geometry ....................................... 319
   15.1 The Jaynes-Ingarden Theory ............................ 319
   15.2 Non-Linear Ising Dynamics ............................. 322
   15.3 Ising Model Close to Equilibrium ...................... 327
   15.4 Non-linear Heisenberg Model ........................... 329
   15.5 Estimation; the Cramer-Rao Inequality ................. 333
   15.6 Efron, Dawid and Amari ................................ 337
   15.7 Entropy Methods, Exponential Families ................. 340
   15.8 The Work of Pistone and Sempi ......................... 341
   15.9 The Finite-Dimensional Quantum Info-Manifold .......... 346
   15.10 Araki's Expansionals and the Analytic Manifold ....... 352
   15.11 The Quantum Young Function ........................... 354
   15.12 The Quantum Cramér Class ............................. 359
   15.13 The Parameter-Free Quantum Manifold .................. 360
   15.14 Exercises ............................................ 364

Bibliography .................................................. 367
Index ......................................................... 377


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:24 2019 Размер: 10,914 bytes.
Посещение N 1557 c 10.04.2012