Rafailov E.U. Ultrafast lasers based on quantum dot structures: physics and devices (Weinheim, 2011). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаRafailov E.U. Ultrafast lasers based on quantum dot structures: physics and devices / E.U.Railov, M.A.Cataluna, E.A.Avrutin. - Weinheim: Wiley-VCH, 2011. - xi, 250 p.: ill. - Ref.: p.223-239. - Ind.: p.242-250. - ISBN 978-3-527-40928-0
 

Место хранения: 053 | Институт лазерной физики CO РАН | Новосибирск | Библиотека

Оглавление / Contents
 
   Introduction ................................................ IX
   Acknowledgments ............................................. XI

1  Semiconductor Quantum Dots for Ultrafast Optoelectronics ..... 1
   1.1  The Role of Dimensionality in Semiconductor Materials ... 1
   1.2  Material Systems Used ................................... 4
        1.2.1  III-V Epitaxially Grown Quantum Dots ............. 4
        1.2.2  QD-Doped Glasses ................................. 6
        1.2.3  Quantum Dashes ................................... 6
   1.3  Quantum Dots: Distinctive Properties for Ultrafast
        Devices ................................................. 7
        1.3.1  Inhomogeneous Broadening ......................... 7
        1.3.2  Ultrafast Carrier Dynamics ....................... 9
2  Foundations of Quantum Dot Theory ........................... 11
   2.1  Energy Structure and Matrix Elements ................... 11
   2.2  Theoretical Approaches to Calculating Absorption and
        Gain in Quantum Dots ................................... 14
   2.3  Kinetic Theory of Quantum Dots ......................... 22
   2.4  Light-Matter Interactions in Quantum Dots .............. 37
   2.5  The Nonlinearity Coefficient ........................... 51
3  Quantum Dots in Amplifiers of Ultrashort Pulses ............. 55
   3.1  Optical Amplifiers for High-Speed Applications:
        Requirements and Problems .............................. 55
   3.2  Quantum Dot Optical Amplifiers: Short-Pulse Operating
        Regime ................................................. 62
   3.3  Quantum Dot Optical Amplifiers at High Bit Rates: Low
        Distortions and Patterning-Free Operation .............. 63
   3.4  Nonlinear Operation and Limiting Function Using QD
        Optical Amplifiers ..................................... 76
4  Quantum Dot Saturable Absorbers ............................. 77
   4.1  Foundations of Saturable Absorber Operation ............ 77
   4.2  The General Physical Principles of Saturable
        Absorption in Semiconductors ........................... 80
        4.2.1  Physical Processes in a Saturable Absorber ...... 80
        4.2.2  Geometry of Saturable Absorber: SESAM versus
               Waveguide Absorber - The Cavity Enhancement of
               Saturable Absorption and the Standing Wave
               Factor in SESAMs ................................ 84
   4.3  The Main Special Features of a Quantum Dot Saturable
        Absorber Operation ..................................... 87
        4.3.1  Bandwidth of QD SAs ............................. 88
        4.3.2  Dynamics of Carrier Relaxation: Ultrafast
               Recovery of Absorption .......................... 88
        4.3.3  Saturation Fluence .............................. 94
5  Monolithic Quantum Dot Mode-Locked Lasers ................... 99
   5.1  Introduction to Semiconductor Mode-Locked Lasers ....... 99
        5.1.1  Place of Semiconductor Mode-Locked Lasers
               Among Other Ultrashort Pulse Sources ............ 99
        5.1.2  Mode-Locking Techniques in Laser Diodes: The
               Main Principles ................................ 100
        5.1.3  Passive Mode Locking: The Qualitative
               Picture, Physics, and Devices .................. 101
   5.2  Theoretical Models of Mode Locking in Semiconductor
        Lasers ................................................ 103
        5.2.1  Small-Signal Time Domain Models: Self-
               Consistent Pulse Profile ....................... 103
        5.2.2  Large-Signal Time Domain Approach: Delay
               Differential Equations Model ................... 109
        5.2.3  Traveling Wave Models .......................... 120
        5.2.4  Frequency and Time-Frequency Treatment of
               Mode Locking: Dynamic Modal Analysis ........... 125
   5.3  Main Predictions of Generic Mode-Locked Laser Models
        and their Implication for Quantum Dot Lasers .......... 126
        5.3.1  Laser Performance Depending on the Operating
               Point .......................................... 126
        5.3.2  Main Parameters that Affect Mode-Locked Laser
               Behavior ....................................... 129
   5.4  Specific Features of Quantum Dot Mode-Locked Lasers
        in Theory and Modeling ................................ 131
        5.4.1  Delay Differential Equation Model for Quantum
               Dot Mode-Locked Lasers ......................... 132
        5.4.2  Traveling Wave Modeling of Quantum Dot Mode-
               Locked Lasers: Effects of Multiple Levels and
               Inhomogeneous Broadening ....................... 141
        5.4.3  Modal Analysis for QD Mode-Locked Lasers ....... 153
   5.5  Advantages of Quantum Dot Materials in Mode-Locked
        Laser Diodes .......................................... 154
        5.5.1  Advantages of QD Saturable Absorbers ........... 154
        5.5.2  Broad Gain Bandwidth ........................... 154
        5.5.3  Low Threshold Current .......................... 155
        5.5.5  Suppressed Carrier Diffusion ................... 156
        5.5.6  Lower Level of Amplified Spontaneous
               Emission ....................................... 157
        5.5.7  Linewidth Enhancement Factor ................... 157
   5.6  Ultrashort Pulse Generation: Achievements and
        Strategies ............................................ 158
        5.6.1  Monolithic Mode-Locked Quantum Dot Lasers ...... 258
        5.6.2  Chirp Measurement and Pulse Compression ........ 161
        5.6.3  Toward Higher Power: Tapered Lasers ............ 164
        5.6.4  Toward Higher Repetition Rates ................. 165
        5.6.5  External Cavity QD Mode-Locked Lasers .......... 166
   5.7  Noise Characteristics of QD Mode-Locked Lasers ........ 167
        5.7.1  Timing Jitter .................................. 167
        5.7.2  Pulse Repetition Rate Stability and
               Resilience to Optical Feedback ................. 170
        5.7.3  Performance Under Optical Injection ............ 172
   5.8  Performance of QD Mode-Locked Lasers at Elevated
        Temperature ........................................... 174
        5.8.1  Stable Mode Locking at Elevated Temperature .... 174
        5.8.2  Pulse Duration Trends at Higher Temperatures ... 175
        5.8.3  The Use of p-Doping in QD Mode-Locked Lasers ... 176
   5.9  Exploiting Different Transitions for Pulse
        Generation ............................................ 176
        5.9.1  Mode Locking via Ground and Excited States ..... 176
        5.9.2  The Excited-State Transition as Tool for
               Novel Mode-Locking Regimes ..................... 179
   5.10 Summary and Outlook ................................... 180
        5.10.1 QD Mode-Locked Laser Diodes: New
               Functionalities ................................ 180
        5.10.2 Future Directions .............................. 181
6  Ultrashort Pulse Solid State Lasers Based on Quantum
   Dot Saturable Absorbers .................................... 183
   6.1  A Brief Historical Overview of Ultrashort-Pulse
        Generation ............................................ 183
   6.2  Macroscopic Parameters of Saturable Absorbers ......... 184
   6.3  QD SESAMs for Efficient Passive Mode Locking of
        Solid-State Lasers Emitted around 1 μm ................ 187
   6.4  QD SESAMs for Efficient Passive Mode Locking of
        Solid-State Lasers Emitted around 1.3 μm .............. 193
   6.5  QD SESAMs for the Passive Mode Locking of Fiber
        Lasers ................................................ 199
   6.6  Mode-Locked Semiconductor Disk Lasers Incorporating
        QD SESAMs ............................................. 201
   6.7  Optically Pumped Quantum Dot VECSELs .................. 204
7  Saturable Absorbers Based on QD-Doped Classes .............. 207
   7.1  II—VI Semiconductor Nanocrystals in Glass ............. 207
   7.2  IV-VI Semiconductor QD-Doped Glasses for Ultrashort-
        Pulse Generation from Solid-State Lasers .............. 209
   7.3  QD-Doped Glass Saturable Absorbers for Passive Mode
        Locking around 1.3 μm ................................. 210
   7.4  Cr:YAG Laser Passively Mode Locked with a QD-Doped
        Glass Saturable Absorber .............................. 212
   7.5  PbS QD-Doped Glass Saturable Absorbers for Passive
        Mode Locking around 1 μm and Their Nonlinear
        Characteristics ....................................... 214
8  Emerging Applications of Ultrafast Quantum Dot Lasers ...... 217
   8.1  Optical Communications ................................ 217
   8.2  Datacoms .............................................. 219
   8.3  Biophotonics and Medical Applications ................. 220
   8.4  Outlook ............................................... 220

   References ................................................. 223
   Index ...................................................... 241


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:22 2019 Размер: 13,023 bytes.
Посещение N 1540 c 10.04.2012