Lange K. Applied probability (New York; London, 2010). - ОГЛАВЛЕНИЕ / CONTENTS
Навигация

Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
ОбложкаLange K. Applied probability. - 2nd ed. - New York; London: Springer, 2010. - xv, 436 p.: ill. - (Springer texts in statistics). - Ref.: p.415-428. - Ind.: p.429-436. - ISBN 978-1-4419-7164-7
 

Оглавление / Contents
 
Preface to the Second Edition ................................... v
Preface ....................................................... vii

1  Basic Notions of Probability Theory .......................... 1
   1.1  Introduction ............................................ 1
   1.2  Probability and Expectation ............................. 1
   1.3  Conditional Probability ................................. 6
   1.4  Independence ............................................ 8
   1.5  Distributions, Densities, and Moments ................... 9
   1.6  Convolution ............................................ 13
   1.7  Random Vectors ......................................... 14
   1.8  Multivariate Normal Random Vectors ..................... 17
   1.9  Problems ............................................... 20
2  Calculation of Expectations ................................. 25
   2.1  Introduction ........................................... 25
   2.2  Indicator Random Variables and Symmetry ................ 25
   2.3  Conditioning ........................................... 29
   2.4  Moment Transforms ...................................... 31
   2.5  Tail Probability Methods ............................... 36
   2.6  Moments of Reciprocals and Ratios ...................... 38
   2.7  Reduction of Degree .................................... 40
   2.8  Spherical Surface Measure .............................. 42
   2.9  Dirichlet Distribution ................................. 44
   2.10 Problems ............................................... 46
3  Convexity, Optimization, and Inequalities ................... 55
   3.1  Introduction ........................................... 55
   3.2  Convex Functions ....................................... 56
   3.3  Minimization of Convex Functions ....................... 61
   3.4  The MM Algorithm ....................................... 63
   3.5  Moment Inequalities .................................... 66
   3.6  Problems ............................................... 70
4  Combinatorics ............................................... 75
   4.1  Introduction ........................................... 75
   4.2  Bijections ............................................. 75
   4.3  Inclusion-Exclusion .................................... 78
   4.4  Applications to Order Statistics ....................... 83
   4.5  Catalan Numbers ........................................ 84
   4.6  Stirling Numbers ....................................... 86
   4.7  Application to an Urn Model ............................ 89
   4.8  Application to Faà di Bruno's Formula .................. 91
   4.9  Pigeonhole Principle ................................... 93
   4.10 Problems ............................................... 94
5  Combinatorial Optimization ................................. 103
   5.1  Introduction .......................................... 103
   5.2  Quick Sort ............................................ 104
   5.3  Data Compression and Huffman Coding ................... 106
   5.4  Graph Coloring ........................................ 108
   5.5  Point Sets with Only Acute Angles ..................... 112
   5.6  Sperner's Theorem ..................................... 113
   5.7  Subadditivity and Expectations ........................ 114
   5.8  Problems .............................................. 118
6  Poisson Processes .......................................... 123
   6.1  Introduction .......................................... 123
   6.2  The Poisson Distribution .............................. 124
   6.3  Characterization and Construction ..................... 124
   6.4  One-Dimensional Processes ............................. 127
   6.5  Transmission Tomography ............................... 131
   6.6  Mathematical Applications ............................. 134
   6.7  Transformations ....................................... 136
   6.8  Marking and Coloring .................................. 138
   6.9  Campbell's Moment Formulas ............................ 139
   6.10 Problems .............................................. 142
7  Discrete-Time Markov Chains ................................ 151
   7.1  Introduction .......................................... 151
   7.2  Definitions and Elementary Theory ..................... 151
   7.3  Examples .............................................. 155
   7.4  Coupling .............................................. 158
   7.5  Convergence Rates for Reversible Chains ............... 163
   7.6  Hitting Probabilities and Hitting Times ............... 165
   7.7  Markov Chain Monte Carlo .............................. 168
        7.7.1  The Hastings-Metropolis Algorithm .............. 168
        7.7.2  Gibbs Sampling ................................. 170
        7.7.3  Convergence of the Independence Sampler ........ 171
   7.8  Simulated Annealing ................................... 173
   7.9  Problems .............................................. 174
8  Continuous-Time Markov Chains .............................. 187
   8.1  Introduction .......................................... 187
   8.2  Finite-Time Transition Probabilities .................. 187
   8.3  Derivation of the Backward Equations .................. 189
   8.4  Equilibrium Distributions and Reversibility ........... 190
   8.5  Examples .............................................. 193
   8.6  Calculation of Matrix Exponentials .................... 197
   8.7  Kendall's Birth-Death-Immigration Process ............. 200
   8.8  Solution of Kendall's Equation ........................ 203
   8.9  Problems .............................................. 206
9  Branching Processes ........................................ 217
   9.1  Introduction .......................................... 217
   9.2  Examples of Branching Processes ....................... 218
   9.3  Elementary Theory ..................................... 219
   9.4  Extinction ............................................ 221
   9.5  Immigration ........................................... 225
   9.6  Multitype Branching Processes ......................... 229
   9.7  Viral Reproduction in HIV ............................. 231
   9.8  Basic Reproduction Numbers ............................ 232
   9.9  Problems .............................................. 235
10 Martingales ................................................ 247
   10.1 Introduction .......................................... 247
   10.2 Definition and Examples ............................... 247
   10.3 Martingale Convergence ................................ 251
   10.4 Optional Stopping ..................................... 255
   10.5 Large Deviation Bounds ................................ 260
   10.6 Problems .............................................. 264
11 Diffusion Processes ........................................ 269
   11.1 Introduction .......................................... 269
   11.2 Basic Definitions and Properties ...................... 270
   11.3 Examples Involving Brownian Motion .................... 272
   11.4 Other Examples of Diffusion Processes ................. 276
   11.5 Process Moments ....................................... 280
   11.6 First Passage Problems ................................ 282
   11.7 The Reflection Principle .............................. 287
   11.8 Equilibrium Distributions ............................. 289
   11.9 Problems .............................................. 291
12 Asymptotic Methods ......................................... 297
   12.1 Introduction .......................................... 297
   12.2 Asymptotic Expansions ................................. 298
        12.2.1 Order Relations ................................ 298
        12.2.2 Finite Taylor Expansions ....................... 299
        12.2.3 Exploitation of Nearby Exact Results ........... 301
        12.2.4 Expansions via Integration by Parts ............ 302
   12.3 Laplace's Method ...................................... 304
        12.3.1 Stirling's Formula ............................. 306
        12.3.2 Watson's Lemma ................................. 307
   12.4 Euler-Maclaurin Summation Formula ..................... 308
   12.5 Asymptotics and Generating Functions .................. 311
   12.6 Stochastic Forms of Convergence ....................... 314
   12.7 Problems .............................................. 318
13 Numerical Methods .......................................... 327
   13.1 Introduction .......................................... 327
   13.2 Computation of Equilibrium Distributions .............. 328
   13.3 Applications of the Finite Fourier Transform .......... 331
   13.4 Counting Jumps in a Markov Chain ...................... 336
   13.5 Stochastic Simulation and Intensity Leaping ........... 339
   13.6 A Numerical Method for Diffusion Processes ............ 343
   13.7 Application to the Wright-Fisher Process .............. 347
   13.8 Problems .............................................. 350
14 Poisson Approximation ...................................... 355
   14.1 Introduction .......................................... 355
   14.2 Applications of the Coupling Method ................... 356
   14.3 Applications of the Neighborhood Method ............... 360
   14.4 Proof of the Chen-Stein Estimates ..................... 363
   14.5 Problems .............................................. 368
15 Number Theory .............................................. 373
   15.1 Introduction .......................................... 373
   15.2 Zipf's Distribution and Euler's Theorem ............... 374
   15.3 Dirichlet Products and Möbius Inversion ............... 378
   15.4 Averages of Arithmetic Functions ...................... 382
   15.5 The Prime Number Theorem .............................. 386
   15.6 Problems .............................................. 391
Appendix: Mathematical Review ................................. 395
   A.l Elementary Number Theory ............................... 395
   A.2 Nonnegative Matrices ................................... 397
   A.3 The Finite Fourier Transform ........................... 401
   A.4 The Fourier Transform .................................. 403
   A.5 Fourier Series ......................................... 406
   A.6 Laplace's Method and Watson's Lemma .................... 410
   A.7 A Tauberian Theorem .................................... 412

   References ................................................. 415
   Index ...................................................... 429


Архив выставки новых поступлений | Отечественные поступления | Иностранные поступления | Сиглы
 

[О библиотеке | Академгородок | Новости | Выставки | Ресурсы | Библиография | Партнеры | ИнфоЛоция | Поиск]
  © 1997–2024 Отделение ГПНТБ СО РАН  

Документ изменен: Wed Feb 27 14:23:22 2019 Размер: 14,559 bytes.
Посещение N 1385 c 10.04.2012